scholarly journals Human Polyomavirus-Encoded Circular RNAs

2020 ◽  
Author(s):  
Rong Yang ◽  
Eunice E. Lee ◽  
Jiwoong Kim ◽  
Joon H. Choi ◽  
Yating Chen ◽  
...  

ABSTRACTCircular RNAs (circRNAs) are a conserved class of RNAs with diverse functions. A subset of circRNAs are translated into peptides. Here we describe circular RNAs encoded by human polyomaviruses (HPyVs), including circular forms of RNAs encoding variants of the previously described alternative large T antigen open reading frame (ALTO) gene. Circular ALTO RNAs (circALTOs) can be detected in virus positive Merkel cell carcinoma (VP-MCC) cell lines and tumor samples. CircALTOs are stable, predominantly located in the cytoplasm, and N6-methyladenosine (m6A) modified. MCPyV circALTOs produce ALTO protein in cultured cells. MCPyV ALTO promotes the transcription of co-transfected reporter genes. MCPyV circALTOs are enriched in exosomes derived from VP-MCC lines and circALTO-transfected 293T cells, and purified exosomes can mediate ALTO expression and transcriptional activation. The related trichodysplasia spinulosa polyomavirus (TSPyV) also expresses a circALTO that can be detected in infected tissues and produces ALTO protein in cultured cells. Thus, human polyomavirus circRNAs are expressed in human tumors and tissues, encode for proteins, and may contribute to the infectious and tumorigenic properties of these viruses.

2021 ◽  
Vol 17 (5) ◽  
pp. e1009582
Author(s):  
Rong Yang ◽  
Eunice E. Lee ◽  
Jiwoong Kim ◽  
Joon H. Choi ◽  
Elysha Kolitz ◽  
...  

Circular RNAs (circRNAs) are a conserved class of RNAs with diverse functions, including serving as messenger RNAs that are translated into peptides. Here we describe circular RNAs generated by human polyomaviruses (HPyVs), some of which encode variants of the previously described alternative large T antigen open reading frame (ALTO) protein. Circular ALTO RNAs (circALTOs) can be detected in virus positive Merkel cell carcinoma (VP-MCC) cell lines and tumor samples. CircALTOs are stable, predominantly located in the cytoplasm, and N6-methyladenosine (m6A) modified. The translation of MCPyV circALTOs into ALTO protein is negatively regulated by MCPyV-generated miRNAs in cultured cells. MCPyV ALTO expression increases transcription from some recombinant promoters in vitro and upregulates the expression of multiple genes previously implicated in MCPyV pathogenesis. MCPyV circALTOs are enriched in exosomes derived from VP-MCC lines and circALTO-transfected 293T cells, and purified exosomes can mediate ALTO expression and transcriptional activation in MCPyV-negative cells. The related trichodysplasia spinulosa polyomavirus (TSPyV) also expresses a circALTO that can be detected in infected tissues and produces ALTO protein in cultured cells. Thus, human polyomavirus circRNAs are expressed in human tumors and infected tissues and express proteins that have the potential to modulate the infectious and tumorigenic properties of these viruses.


Virology ◽  
1986 ◽  
Vol 150 (2) ◽  
pp. 361-372 ◽  
Author(s):  
M.J. Tevethia ◽  
R.W. Anderson ◽  
S.S. Tevethia ◽  
D. Simmons ◽  
J. Feunteun ◽  
...  

Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 349-359 ◽  
Author(s):  
M. Fibi ◽  
B. Zink ◽  
M. Kessel ◽  
A.M. Colberg-Poley ◽  
S. Labeit ◽  
...  

We have characterized Hox 1.3 (previously described as m2), a murine homeobox-containing gene, which is a member of the Hox 1 cluster located on chromosome 6. A cloned cDNA was isolated from an Okayama-Berg library generated from the chemically transformed cell line MB66 MCA ACL6. The protein sequence of 270 amino acids was deduced from the nucleotide sequence of an open reading frame containing the homeobox. The open reading frame is interrupted at the genomic level by a 960 bp intron and is organized in two exons. The Hox 1.3 protein was found to contain extensive sequence homology with the murine homeodomain protein Hox 2.1, which is encoded on chromosome 11. There are two homology with the regions in the first exon, i.e. a hexapeptide conserved in many homeobox-containing genes and the N-terminal domain, which was found to be homologous only to Hox 2.1. Furthermore, in exon 2 the homologies of the homeodomain regions are extended up to the carboxy terminus of Hox 1.3 and Hox 2.1. During prenatal murine development, maximal expression of Hox 1.3 is observed in 12-day embryonic tissue. The two transcripts carrying the Hox 1.3 homeobox are 1.9 kb and about 4 kb in length. An abundant Hox 1.3-specific 1.9 kb RNA is also found in F9 cells which were induced for parietal endoderm differentiation, whereas F9 teratocarcinoma stem cells do not stably express this specific RNA. Induction of the transcript occurs immediately after retinoic acid/cAMP treatment and the RNA level remains high for 5 days. Thus, the kinetics are different from the previously described homeobox transcripts Hox 1.1 and Hox 3.1. Interestingly, by analogy to the F9 cell system a negative correlation between transformation and Hox 1.3 expression is observed in 3T3 fibroblasts also. Untransformed 3T3 cells carry abundant 1.9 kb Hox 1.3 RNA, whereas the methylcholanthrene-transformed MB66 and LTK- cells or 3T3 cells transformed by the oncogenes src, fos or SV40 T antigen express only low levels.


2015 ◽  
Vol 89 (18) ◽  
pp. 9427-9439 ◽  
Author(s):  
Els van der Meijden ◽  
Siamaque Kazem ◽  
Christina A. Dargel ◽  
Nick van Vuren ◽  
Paul J. Hensbergen ◽  
...  

ABSTRACTThe polyomavirus tumor (T) antigens play crucial roles in viral replication, transcription, and cellular transformation. They are encoded by partially overlapping open reading frames (ORFs) located in the early region through alternative mRNA splicing. The T expression pattern of the trichodysplasia spinulosa-associated polyomavirus (TSPyV) has not been established yet, hampering further study of its pathogenic mechanisms and taxonomic relationship. Here, we characterized TSPyV T antigen expression in human cell lines transfected with the TSPyV early region. Sequencing of T antigen-encoded reverse transcription-PCR (RT-PCR) products revealed three splice donor and acceptor sites creating six mRNA splice products that potentially encode the antigens small T (ST), middle T (MT), large T (LT), tiny T, 21kT, and alternative T (ALTO). Except for 21kT, these splice products were also detected in skin of TSPyV-infected patients. At least three splice products were confirmed by Northern blotting, likely encoding LT, MT, ST, 21kT, and ALTO. Protein expression was demonstrated for LT, ALTO, and possibly MT, with LT detected in the nucleus and ALTO in the cytoplasm of transfected cells. Splice site and start codon mutations indicated that ALTO is encoded by the same splice product that encodes LT and uses internal start codons for initiation. The genuineness of ALTO was indicated by the identification of acetylated N-terminal ALTO peptides by mass spectrometry. Summarizing, TSPyV exhibits an expression pattern characterized by both MT and ALTO expression, combining features of rodent and human polyomaviruses. This unique expression pattern provides important leads for further study of polyomavirus-related disease and for an understanding of polyomavirus evolution.IMPORTANCEThe human trichodysplasia spinulosa-associated polyomavirus (TSPyV) is distinguished among polyomaviruses for combining productive infection with cell-transforming properties. In the research presented here, we further substantiate this unique position by indicating expression of both middle T antigen (MT) and alternative T antigen (ALTO) in TSPyV. So far, none of the human polyomaviruses was shown to express MT, which is considered the most important viral oncoprotein of rodent polyomaviruses. Coexpression of ALTO and MT, which involves a conserved, recently recognized overlapping ORF subject to positive selection, has not been observed before for any polyomavirus. As a result of our findings, this study provides valuable new insights into polyomavirus T gene use and expression. Obviously, these insights will be instrumental in further study and gaining an understanding of TSPyV pathogenicity. More importantly, however, they provide important leads with regard to the interrelationship, functionality, and evolution of polyomaviruses as a whole, indicating that TSPyV is a suitable model virus to study these entities further.


2009 ◽  
Vol 83 (11) ◽  
pp. 5630-5639 ◽  
Author(s):  
Edward C. Goodwin ◽  
Walter J. Atwood ◽  
Daniel DiMaio

ABSTRACT We developed a high-throughput, cell-based screen to identify chemicals that inhibit infection by the primate polyomaviruses. The screen is based on the detection of compounds that inhibit the ability of a replication-defective simian virus 40 (SV40)-based viral vector to cause growth arrest in HeLa cells by repressing the expression of the endogenous human papillomavirus E7 oncogene in these cells. We identified two compounds, ellagic acid and spiperone, that suppressed the ability of the SV40 recombinant virus to inhibit cellular DNA synthesis. These compounds caused a marked reduction of the ability of wild-type SV40 to productively infect permissive monkey cells, even when the compounds were added several hours after infection. The fraction of cells expressing SV40 large T antigen and the levels of T antigen mRNA were reduced in infected human and monkey cells treated with ellagic acid and spiperone, suggesting that these compounds block a step in the virus life cycle prior to SV40 early gene expression. Ellagic acid and spiperone also inhibited large T antigen expression by BK virus and JC virus, two important, pathogenic human polyomaviruses.


2006 ◽  
Vol 80 (11) ◽  
pp. 5423-5434 ◽  
Author(s):  
Kerstin Lorz ◽  
Heike Hofmann ◽  
Anja Berndt ◽  
Nina Tavalai ◽  
Regina Mueller ◽  
...  

ABSTRACT We previously showed that open reading frame (ORF) UL26 of human cytomegalovirus, a member of the US22 multigene family of betaherpesviruses, encodes a novel tegument protein, which is imported into cells in the course of viral infection. Moreover, we demonstrated that pUL26 contains a strong transcriptional activation domain and is capable of stimulating the major immediate-early (IE) enhancer-promoter. Since this suggested an important function of pUL26 during the initiation of the viral replicative cycle, we sought to ascertain the relevance of pUL26 by construction of a viral deletion mutant lacking the UL26 ORF using the bacterial artificial chromosome mutagenesis procedure. The resulting deletion virus was verified by PCR, enzyme restriction, and Southern blot analyses. After infection of human foreskin fibroblasts, the UL26 deletion mutant showed a small-plaque phenotype and replicated to significantly lower titers than wild-type or revertant virus. In particular, we noticed a striking decrease of infectious titers 7 days postinfection in a multistep growth experiment, whereas the release of viral DNA from infected cells was not impaired. A further investigation of this aspect revealed a significantly diminished stability of viral particles derived from the UL26 deletion mutant. Consistent with this, we observed that the tegument composition of the deletion mutant deviates from that of the wild-type virus. We therefore hypothesize that pUL26 plays a role not only in the onset of IE gene transcription but also in the assembly of the viral tegument layer in a stable and correct manner.


2002 ◽  
Vol 76 (10) ◽  
pp. 4836-4847 ◽  
Author(s):  
Thomas Stamminger ◽  
Matthias Gstaiger ◽  
Konstanze Weinzierl ◽  
Kerstin Lorz ◽  
Michael Winkler ◽  
...  

ABSTRACT A selection strategy, the activator trap, was used in order to identify genes of human cytomegalovirus (HCMV) that encode strong transcriptional activation domains in mammalian cells. This approach is based on the isolation of activation domains from a GAL4 fusion library by means of selective plasmid replication, which is mediated in transfected cells by a GAL4-inducible T antigen gene. With this screening strategy, we were able to isolate two types of plasmids encoding transactivating fusion proteins from a library of random HCMV DNA inserts. One plasmid contained the exon 3 of the HCMV IE-1/2 gene region, which has previously been identified as a strong transcriptional activation domain. In the second type of plasmid, the open reading frame (ORF) UL26 of HCMV was fused to the GAL4 DNA-binding domain. By quantitative RNA mapping using S1 nuclease analysis, we were able to classify UL26 as a strong enhancer-type activation domain with no apparent homology to characterized transcriptional activators. Western blot analysis with a specific polyclonal antibody raised against a prokaryotic UL26 fusion protein revealed that two protein isoforms of 21 and 27 kDa are derived from the UL26 ORF in both infected and transfected cells. Both protein isoforms, which arise via alternative usage of two in-frame translational start codons, showed a nuclear localization and could be detected as early as 6 h after infection of primary human fibroblasts. By performing Western blot analysis with purified virions combined with fractionation experiments, we provide evidence that pUL26 is a novel tegument protein of HCMV that is imported during viral infection. Furthermore, we observed transactivation of the HCMV major immediate-early enhancer-promoter by pUL26, whereas several early and late promoters were not affected. Our data suggest that pUL26 is a novel tegument protein of HCMV with a strong transcriptional activation domain that could play an important role during initiation of the viral replicative cycle.


2021 ◽  
Vol 3 ◽  
Author(s):  
Songlei Liu ◽  
Johannes Striebel ◽  
Giovanni Pasquini ◽  
Alex H. M. Ng ◽  
Parastoo Khoshakhlagh ◽  
...  

Gene activation with the CRISPR-Cas system has great implications in studying gene function, controlling cellular behavior, and modulating disease progression. In this review, we survey recent studies on targeted gene activation and multiplexed screening for inducing neuronal differentiation using CRISPR-Cas transcriptional activation (CRISPRa) and open reading frame (ORF) expression. Critical technical parameters of CRISPRa and ORF-based strategies for neuronal programming are presented and discussed. In addition, recent progress on in vivo applications of CRISPRa to the nervous system are highlighted. Overall, CRISPRa represents a valuable addition to the experimental toolbox for neuronal cell-type programming.


1999 ◽  
Vol 73 (12) ◽  
pp. 10146-10157 ◽  
Author(s):  
Mahmut Safak ◽  
Gary L. Gallia ◽  
Sameer A. Ansari ◽  
Kamel Khalili

ABSTRACT Y-box binding protein YB-1 is a member of a family of DNA and RNA binding proteins which have been shown to affect gene expression at both the transcriptional and translational levels. We have previously shown that YB-1 modulates transcription from the promoters of the ubiquitous human polyomavirus JC virus (JCV). Here we investigate the physical and functional interplay between YB-1 and the viral regulatory protein large T antigen (T-antigen), using JCV as a model system. Results of mobility band shift assays demonstrated that the efficiency of binding of YB-1 to a 23-bp single-stranded viral target sequence was significantly increased when T-antigen was included in the binding reaction mixture. Affinity chromatography and coimmunoprecipitation assays demonstrated that YB-1 and T-antigen physically interact with each other. Additionally, results of transcription studies demonstrated that these two proteins interact functionally on the JCV early and late gene promoters. Whereas ectopic expression of YB-1 and T-antigen results in synergistic transactivation of the viral late promoter, YB-1 alleviates T-antigen-mediated transcriptional suppression of the viral early promoter activity. Furthermore, we have localized, through the use of a series of deletion mutants, the sequences of these proteins which are important for their interaction. The T-antigen-interacting region of YB-1 is located in the cold shock domain of YB-1 and its immediate flanking sequences, and the YB-1-interacting domain of T-antigen maps to the carboxy-terminal half of T-antigen. Results of transient transfection assays with various YB-1 mutants and T-antigen expression constructs confirm the specificity of the functional interaction between YB-1 and T-antigen. Taken together, these data demonstrate that the cellular factor YB-1 and the viral regulatory protein T-antigen interact both physically and functionally and that this interaction modulates transcription from the JCV promoters.


Sign in / Sign up

Export Citation Format

Share Document