scholarly journals Quantification of fast molecular adhesion by fluorescence footprinting

2021 ◽  
Author(s):  
Adam B. Yasunaga ◽  
Isaac T.S. Li

AbstractRolling adhesion is a unique process in which the adhesion events are short-lived and operate under highly non-equilibrium conditions. These characteristics pose a challenge in molecular force quantification, where in situ measurement of such forces cannot be achieved with most molecular force sensors that probe near equilibrium. In this report, we demonstrated a quantitative adhesion footprint assay combining DNA-based non-equilibrium force probes and modelling to measure the molecular force involved in fast rolling adhesion. We were able to directly profile the ensemble molecular force distribution during rolling adhesion with a dynamic range between 0 – 18 pN. Our results showed that the shear stress driving bead rolling motility directly controls the molecular tension on the probe-conjugated adhesion complex. Furthermore, the shear stress can steer the dissociation bias of components within the molecular force probe complex, favouring either DNA probe dissociation or receptor-ligand dissociation.

2021 ◽  
Vol 7 (34) ◽  
pp. eabe6984
Author(s):  
Adam B. Yasunaga ◽  
Isaac T. S. Li

Rolling adhesion is a unique process in which the adhesion events are short-lived and operate under highly nonequilibrium conditions. These characteristics pose a challenge in molecular force quantification, where in situ measurement of these forces cannot be achieved with molecular force sensors that probe near equilibrium. Here, we demonstrated a quantitative adhesion footprint assay combining DNA-based nonequilibrium force probes and modeling to measure the molecular force involved in fast rolling adhesion. We were able to directly profile the ensemble molecular force distribution in our system during rolling adhesion with a dynamic range between 0 and 18 pN. Our results showed that the shear stress driving bead rolling motility directly controls the molecular tension on the probe-conjugated adhesion complex. Furthermore, the shear stress can steer the dissociation bias of components within the molecular force probe complex, favoring either DNA probe dissociation or receptor-ligand dissociation.


ChemPhysChem ◽  
2007 ◽  
Vol 8 (16) ◽  
pp. 2318-2320 ◽  
Author(s):  
Duc Thanh Pham ◽  
Klaus Wandelt ◽  
Peter Broekmann

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jan Ravnik ◽  
Michele Diego ◽  
Yaroslav Gerasimenko ◽  
Yevhenii Vaskivskyi ◽  
Igor Vaskivskyi ◽  
...  

AbstractMetastable self-organized electronic states in quantum materials are of fundamental importance, displaying emergent dynamical properties that may be used in new generations of sensors and memory devices. Such states are typically formed through phase transitions under non-equilibrium conditions and the final state is reached through processes that span a large range of timescales. Conventionally, phase diagrams of materials are thought of as static, without temporal evolution. However, many functional properties of materials arise as a result of complex temporal changes in the material occurring on different timescales. Hitherto, such properties were not considered within the context of a temporally-evolving phase diagram, even though, under non-equilibrium conditions, different phases typically evolve on different timescales. Here, by using time-resolved optical techniques and femtosecond-pulse-excited scanning tunneling microscopy (STM), we track the evolution of the metastable states in a material that has been of wide recent interest, the quasi-two-dimensional dichalcogenide 1T-TaS2. We map out its temporal phase diagram using the photon density and temperature as control parameters on timescales ranging from 10−12 to 103 s. The introduction of a time-domain axis in the phase diagram enables us to follow the evolution of metastable emergent states created by different phase transition mechanisms on different timescales, thus enabling comparison with theoretical predictions of the phase diagram, and opening the way to understanding of the complex ordering processes in metastable materials.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2454-2460 ◽  
Author(s):  
X. P. ZHAO ◽  
X. DUAN

In-situ sol-gel method to prepare colloidal hybrids of surfactant modified polysucchride and titanium oxide has been presented, and experiments indicated these highly ER active particles exhibited a remarkable ER effect. The static shear stress can be up to 37 k Pa (shear rate 5 S -1) under DC field of 4 kV/mm at root temperature, well above that of simple blends of starch and TiO 2. In the meanwhile, temperature dependence and sedimentation stability were also greatly improved. Based on recent experimental facts, we find that dielectric properties and surface (interface) activity are two necessary conditions fulfilling the requirement of high ER activity. Adequate grinding of particles with oil can effectively enhance the shear stress, which may be owed to the decline of the activation energy needed for restructuring. It has provided us a new horizon for preparation of excellent ER materials and further studies should be continued to make.


Author(s):  
Sumit Pal ◽  
Antara Reja ◽  
Subhajit Bal ◽  
Baishakhi Tikader ◽  
Dibyendu Das

Sign in / Sign up

Export Citation Format

Share Document