scholarly journals Studying the course of Covid-19 by a recursive delay approach

Author(s):  
Matthias Kreck ◽  
Erhard Scholz

AbstractIn an earlier paper we proposed a recursive model for epidemics; in the present paper we generalize this model to include the asymptomatic or unrecorded symptomatic people, which we call dark people (dark sector). We call this the SEPARd-model. A delay differential equation version of the model is added; it allows a better comparison to other models. We carry this out by a comparison with the classical SIR model and indicate why we believe that the SEPARd model may work better for Covid-19 than other approaches.In the second part of the paper we explain how to deal with the data provided by the JHU, in particular we explain how to derive central model parameters from the data. Other parameters, like the size of the dark sector, are less accessible and have to be estimated more roughly, at best by results of representative serological studies which are accessible, however, only for a few countries. We start our country studies with Switzerland where such data are available. Then we apply the model to a collection of other countries, three European ones (Germany, France, Sweden), the three most stricken countries from three other continents (USA, Brazil, India). Finally we show that even the aggregated world data can be well represented by our approach.At the end of the paper we discuss the use of the model. Perhaps the most striking application is that it allows a quantitative analysis of the influence of the time until people are sent to quarantine or hospital. This suggests that imposing means to shorten this time is a powerful tool to flatten the curves.

2021 ◽  
Vol 22 (4) ◽  
pp. 515-531
Author(s):  
J. F. C. A. Meyer ◽  
M. Lima ◽  
C. C. Espitia ◽  
F. Longo ◽  
B. Laiate ◽  
...  

In this paper some innovative aspects of the mathematical modelling of classic epidemiology problems for the study of models related to the COVID-19 pandemic dynamics are presented. In addition, they are compared to real-world data using numerical methods in order to approximate the solutions. One of these models includes a non-transmitting compartment and another one, a delay-differential equation in the SIR-type method. Finally, a comparative discussion of the results is also presented. 


2020 ◽  
Author(s):  
Michael Nikolaou

AbstractThe susceptible-infectious-removed (SIR) compartmental model structure and its variants are a fundamental modeling tool in epidemiology. As typically used, however, this tool may introduce an inconsistency by assuming that the rate of depletion of a compartment is proportional to the content of that compartment. As mentioned in the seminal SIR work of Kermack and McKendrick, this is an assumption of mathematical convenience rather than realism. As such, it leads to underprediction of the infectious compartment peaks by a factor of about two, a problem of particular importance when dealing with availability of resources during an epidemic. To remedy this problem, we develop the dSIR model structure, comprising a single delay differential equation and associated delay algebraic equations. We show that SIR and dSIR fully agree in assessing stability and long-term values of a population through an epidemic, but differ considerably in the exponential rates of ascent and descent as well as peak values during the epidemic. The novel Padé-SIR structure is also introduced as a approximation of dSIR by ordinary differential equations. We rigorously analyze the properties of these models and present a number of illustrative simulations, particularly in view of the recent coronavirus epidemic. Suggestions for further study are made.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 105
Author(s):  
Lokesh Singh ◽  
Dhirendra Bahuguna

In this article, we construct a C1 stable invariant manifold for the delay differential equation x′=Ax(t)+Lxt+f(t,xt) assuming the ρ-nonuniform exponential dichotomy for the corresponding solution operator. We also assume that the C1 perturbation, f(t,xt), and its derivative are sufficiently small and satisfy smoothness conditions. To obtain the invariant manifold, we follow the method developed by Lyapunov and Perron. We also show the dependence of invariant manifold on the perturbation f(t,xt).


Author(s):  
K. C. Panda ◽  
R. N. Rath ◽  
S. K. Rath

In this paper, we obtain sufficient conditions for oscillation and nonoscillation of the solutions of the neutral delay differential equation yt−∑j=1kpjtyrjt′+qtGygt−utHyht=ft, where pj and rj for each j and q,u,G,H,g,h, and f are all continuous functions and q≥0,u≥0,ht<t,gt<t, and rjt<t for each j. Further, each rjt, gt, and ht⟶∞ as t⟶∞. This paper improves and generalizes some known results.


Sign in / Sign up

Export Citation Format

Share Document