scholarly journals RNAi and Ino80 complex control rate limiting translocation step that moves rDNA to eroding telomeres

2021 ◽  
Author(s):  
Manasi S. Apte ◽  
Hirohisa Masuda ◽  
David Lee Wheeler ◽  
Julia Promisel Cooper

AbstractThe discovery of HAATIrDNA, a mode of telomerase-negative survival in which canonical telomeres are replaced with ribosomal DNA (rDNA) repeats that acquire chromosome end-protection capability, raised crucial questions as to how rDNA tracts ‘jump’ to eroding, nonhomologous chromosome ends. Here we show that HAATIrDNA formation is initiated and limited by a single translocation that juxtaposes rDNA from Chromosome (Chr) III onto subtelomeric elements (STE) on Chr I or II; this rare reaction requires the RNAi pathway and the Ino80 nucleosome remodeling complex (Ino80C), thus defining an unforeseen relationship between these two machineries. The unique STE-rDNA junction created by this initial translocation is efficiently copied to the remaining STE chromosome ends, without the need for RNAi or Ino80C, forming HAATIrDNA. Intriguingly, both the RNAi and Ino80C machineries contain a component that plays dual roles in HAATI subtype choice. Dcr1 of the RNAi pathway and Iec1 of the Ino80C both promote HAATIrDNA formation as part of their respective canonical machineries, but both also inhibit formation of the exceedingly rare HAATISTE (in which STE sequences mobilize throughout the genome and assume chromosome end protection capacity) in non-canonical, pathway-independent manners. This work provides a glimpse into a previously unrecognized crosstalk between RNAi and Ino80C in controlling unusual translocation reactions that establish telomere-free linear chromosome ends.

1978 ◽  
Vol 39 (02) ◽  
pp. 496-503 ◽  
Author(s):  
P A D’Amore ◽  
H B Hechtman ◽  
D Shepro

SummaryOrnithine decarboxylase (ODC) activity, the rate-limiting step in the synthesis of polyamines, can be demonstrated in cultured, bovine, aortic endothelial cells (EC). Serum, serotonin and thrombin produce a rise in ODC activity. The serotonin-induced ODC activity is significantly blocked by imipramine (10-5 M) or Lilly 11 0140 (10-6M). Preincubation of EC with these blockers together almost completely depresses the 5-HT-stimulated ODC activity. These observations suggest a manner by which platelets may maintain EC structural and metabolic soundness.


1995 ◽  
Vol 73 (04) ◽  
pp. 668-674 ◽  
Author(s):  
L Vijaya Mohan Rao ◽  
An D Hoang ◽  
Samuel I Rapaport

SummaryLupus anticoagulant (LA) IgGs have been reported to inhibit more effectively and consistently the Xa/Va/phospholipid complex-catalyzed activation of human prothrombin than the Xa/Va/phospholipid complex-catalyzed activation of bovine prothrombin. This led us to carry out studies to determine whether the ability to inhibit the activation of prothrombin of LA IgGs, separated from the plasma of 15 patients by protein A affinity chromatography, could be related to the ability of the LA IgGs to bind to prothrombin under various experimental conditions. Of 14 LA IgG preparations tested all prolonged to a variable but substantial extent the dilute Russell’s viper venom time (dRVVT) of human plasma but only minimally prolonged the dRVVT of bovine plasma. In a purified prothrombin activation system with a rate limiting concentration of phospholipid, all 15 LA IgG preparations inhibited the activation of human prothrombin with the majority showing >50% of inhibition. In contrast, only one LA IgG markedly inhibited (>50%) the activation of bovine prothrombin and five others moderately inhibited (25-40%) the activation of bovine prothrombin. Nevertheless, the majority of LA IgG preparations bound to immobilized bovine prothrombin on a Western blot and also to immobilized bovine prothrombin on a microtiter well. In an ELISA in which phosphatidylserine (PS) was immobilized on microtiter wells, bovine prothrombin supported the binding of 10 of 15 LA IgG preparations to PS. However, the extent of binding was lower than that observed with human prothrombin. In experiments with 125I-human prothrombin or 125I-bovine prothrombin in a solution containing Ca2+, the addition of PS/PC vesicles enhanced the binding of both human and bovine prothrombin to some LA IgG preparations. The enhanced binding was particularly evident for bovine prothrombin. Although seemingly related for some preparations, the ability of a LA IgG to bind to bovine prothrombin, either in the presence or absence of PS, and the ability of that LA IgG to inhibit the activation of bovine prothrombin was not consistently related for all preparations.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2049-P
Author(s):  
REBECCA K. DAVIDSON ◽  
NOLAN CASEY ◽  
JASON SPAETH

Diabetes ◽  
1993 ◽  
Vol 42 (2) ◽  
pp. 296-306 ◽  
Author(s):  
D. C. Bradley ◽  
R. A. Poulin ◽  
R. N. Bergman

2017 ◽  
Vol 13 (1) ◽  
pp. 4486-4494 ◽  
Author(s):  
G.El Damrawi ◽  
F. Gharghar

Cerium oxide in borate glasses of composition xCeO2·(50 − x)PbO·50B2O3 plays an important role in changing both microstructure and magnetic behaviors of the system. The structural role of CeO2 as an effective agent for cluster and crystal formation in borate network is clearly evidenced by XRD technique. Both structure and size of well-formed cerium separated clusters have an effective influence on the structural properties. The cluster aggregations are documented to be found in different range ordered structures, intermediate and long range orders are the most structures in which cerium phases are involved. The nano-sized crystallized cerium species in lead borate phase are evidenced to have magnetic behavior.  The criteria of building new specific borate phase enriched with cerium as ferrimagnetism has been found to keep the magnetization in large scale even at extremely high temperature. Treating the glass thermally or exposing it to an effective dose of ionized radiation is evidenced to have an essential change in magnetic properties. Thermal heat treatment for some of investigated materials is observed to play dual roles in the glass matrix. It can not only enhance alignment processes of the magnetic moment but also increases the capacity of the crystallite species in the magnetic phases. On the other hand, reverse processes are remarked under the effect of irradiation. The magnetization was found to be lowered, since several types of the trap centers which are regarded as defective states can be produced by effect of ionized radiation. 


2020 ◽  
Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.


2019 ◽  
Author(s):  
Sean Lund ◽  
Taylor Courtney ◽  
Gavin Williams

Isoprenoids are a large class of natural products with wide-ranging applications. Synthetic biology approaches to the manufacture of isoprenoids and their new-to-nature derivatives are limited due to the provision in Nature of just two hemiterpene building blocks for isoprenoid biosynthesis. To address this limitation, artificial chemo-enzymatic pathways such as the alcohol-dependent hemiterpene pathway (ADH) serve to leverage consecutive kinases to convert exogenous alcohols to pyrophosphates that could be coupled to downstream isoprenoid biosynthesis. To be successful, each kinase in this pathway should be permissive of a broad range of substrates. For the first time, we have probed the promiscuity of the second enzyme in the ADH pathway, isopentenyl phosphate kinase from Thermoplasma acidophilum, towards a broad range of acceptor monophosphates. Subsequently, we evaluate the suitability of this enzyme to provide non-natural pyrophosphates and provide a critical first step in characterizing the rate limiting steps in the artificial ADH pathway.<br>


Sign in / Sign up

Export Citation Format

Share Document