scholarly journals Pharmacokinetics of Orally Administered GS-441524 in Dogs

2021 ◽  
Author(s):  
Victoria C. Yan ◽  
Sunada Khadka ◽  
Kenisha Arthur ◽  
Cong-Dat Pham ◽  
Matthew J. Yan ◽  
...  

AbstractDespite being FDA-approved for COVID-19, the clinical efficacy of remdesivir (Veklury®) remains contentious. We previously described the pharmacokinetic, pharmacodynamic and toxicological rationales on the greater suitability of its parent nucleoside, GS-441524, for COVID-19 treatment. Here, we assess the oral bioavailability of GS-441524 in beagle dogs and show that plasma concentrations approximately 24-fold higher than the EC50 against SARS-CoV-2 are easily and safely sustained. These data support translation of GS-441524 as an oral agent for COVID-19.

1998 ◽  
Vol 41 (4) ◽  
pp. 602-617 ◽  
Author(s):  
Dale J. Kempf ◽  
Hing L. Sham ◽  
Kennan C. Marsh ◽  
Charles A. Flentge ◽  
David Betebenner ◽  
...  

Author(s):  
Brian J Smith ◽  
Stephen M Kirschner ◽  
Lon V Kendall

In cynomolgus macaques, plasma levels of sustained-release formulations of meloxicam meet or exceed efficacious concentrations for 48 to 72 h, thereby allowing less animal handling and providing more consistent efficacy than standard formulations of meloxicam. The goal of this study was to compare the pharmacokinetics of a single subcutaneous dose of a sustained-release formulation of meloxicam (Melox-SR) with those of oral (Melox-PO) and standard subcutaneous (Melox-SC) formulations dosed every 24 h for 3 consecutive days. Dogs (5 or 6 adult male Beagles) each received the following 3 treat- ments: first, Melox-SR (10 mg/mL, 0.6 mg/kg SC once), next Melox-SC (0.2 mg/kg SC once, followed by 0.1 mg/kg SC every 24 h), and finally Melox-PO (same dosage as Melox-SC), with a washout period of at least 2 wk between formulations. Blood was collected at 0 (baseline), 1, 4, 8, 12, 24, 48, and 72 h after the initial administration of each formulation for comparison of meloxicam plasma concentrations. Blood was also collected before administration and at 48 h after Melox-SR injection for CBC and chemistry analysis. Plasma concentrations (mean ± 1 SD) of Melox-SR peaked at the 1-h time point (2180 ± 359 ng/ mL), whereas those of Melox-PO (295 ± 55 ng/mL) and Melox-SC (551 ± 112 ng/mL) peaked at the 4-h time point. Melox-SR yielded significantly higher plasma concentrations than Melox-PO and Melox-SC until the 48 and 72-h time points, respec- tively. Melox-SC plasma concentrations were significantly higher than those of Melox-PO at 4, 8, 12, 24, 48 and 72 h. No lesions were noted at the Melox-SR injection sites, and Melox-SR administration was not associated with changes in the CBC and serum chemistry panels. A single 0.6-mg/kg dose of Melox-SR can yield plasma concentrations that exceed 350 ng/mL for at least 72 h in adult male dogs.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1533-1541 ◽  
Author(s):  
Gladys I. Rodriguez ◽  
John G. Kuhn ◽  
Geoffrey R. Weiss ◽  
Susan G. Hilsenbeck ◽  
John R. Eckardt ◽  
...  

Abstract Despite the widespread usage of hydroxyurea in the treatment of both malignant and nonmalignant diseases and a recent expansion in the recognition of its potential therapeutic applications, there have been few detailed studies of hydroxyurea's pharmacokinetic (PK) behavior and oral bioavailability. Parenteral administration schedules have been evaluated because of concerns about the possibility for significant interindividual variability in the PK behavior and bioavailability of hydroxyurea after oral administration. In this PK and bioavailability study, 29 patients with advanced solid malignancies were randomized to treatment with 2,000 mg hydroxyurea administered either orally or as a 30-minute intravenous (IV) infusion accompanied by extensive plasma and urine sampling for PK studies. After 3 weeks of treatment with hydroxyurea (80 mg/kg orally every 3 days followed by a 1-week washout period), patients were crossed over to the alternate route of administration, at which time extensive PK studies were repeated. Three days later, patients continued treatment with 80 mg/kg hydroxyurea orally every 3 days for 3 weeks, followed by a 1-week rest period. Thereafter, 80 mg/kg hydroxyurea was administered orally every 3 days. Twenty-two of 29 patients had extensive plasma and urine sampling performed after treatment with both oral and IV hydroxyurea. Oral bioavailability (F) averaged 108%. Moreover, interindividual variability in F was low, as indicated by 19 of 22 individual F values within a narrow range of 85% to 127% and a modest coefficient of variation of 17%. The time in which maximum plasma concentrations (Cmax) were achieved averaged 1.22 hours with an average lag time of 0.22 hours after oral administration. Except for Cmax, which was 19.5% higher after IV drug administration, the PK profiles of oral and IV hydroxyurea were very similar. The plasma disposition of hydroxyurea was well described by a linear two-compartment model. The initial harmonic mean half-lives for oral and IV hydroxyurea were 1.78 and 0.63 hours, respectively, and the harmonic mean terminal half-lives were 3.32 and 3.39 hours, respectively. For IV hydroxyurea, systemic clearance averaged 76.16 mL/min/m2 and the mean volume of distribution at steady-state was 19.71 L/m2, whereas Cloral/F and Voral/F averaged 73.16 mL/min/m2 and 19.65 L/m2, respectively, after oral administration. The percentage of the administered dose of hydroxyurea that was excreted unchanged into the urine was nearly identical after oral and IV administration—36.84% and 35.82%, respectively. Additionally, the acute toxic effects of hydroxyurea after treatment on both routes were similar. Relationships between pertinent PK parameters and the principal toxicity, neutropenia, were sought, but no pharmacodynamic relationships were evident. From PK, bioavailability, and toxicologic standpoints, these results indicate that there are no clear advantages for administering hydroxyurea by the IV route except in situations when oral administration is not possible and/or in the case of severe gastrointestinal impairment.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 561
Author(s):  
Aude A. Ferran ◽  
Marlène Z. Lacroix ◽  
Alain Bousquet-Mélou ◽  
Ivain Duhil ◽  
Béatrice B. Roques

To limit the spread of bacterial diseases in sheep fattening houses, antibiotics are often administered collectively. Collective treatments can be delivered by drinking water but data on the drug’s solubility in water or on plasma exposure of the animals are lacking. We first assessed the solubility of products containing sulfadimethoxine (SDM), associated or not with trimethoprim (TMP), in different waters. We then compared in lambs the SDM and TMP pharmacokinetic profiles after individual intravenous (IV) and oral administrations of SDM-TMP in experimental settings (n = 8) and after a collective treatment by drinking water with SDM-TMP or SDM alone in a sheep fattening house (n = 100 for each treatment). The individual water consumption during the collective treatments was also monitored to characterize the ingestion variability. We showed that TMP had a short terminal half-life and very low oral bioavailability, demonstrating that it would be unable to potentiate SDM by oral route. Conversely, SDM had a long terminal half-life of 18 h and excellent oral bioavailability. However, delivery by drinking water resulted in a very high interindividual variability of SDM plasma concentrations, meaning that although disease spread could be controlled at the group level, some individuals would inevitably be under- or over-exposed to the antibiotic.


2019 ◽  
Vol 16 (6) ◽  
pp. 500-510
Author(s):  
Rong Chai ◽  
Hailing Gao ◽  
Zhihui Ma ◽  
Meng Guo ◽  
Qiang Fu ◽  
...  

Background: Olmesartan medoxomil (OLM) is a promising prodrug hydrolyzed to olmesartan (OL) during absorption from the gastrointestinal tract. OL is a selective angiotensin II receptor antagonist, with high drug resistance and low drug interaction. However, OLM has low solubility and low bioavailability. Therefore, it is extremely urgent to reduce the drug particle size to improve its biological bioavailability. Objective: The aim of the study was to improve the oral bioavailability of poorly water-soluble olmesartan medoxomil (OLM) by using different particle size-reduction strategies. Method: Raw drug material was micronized or nanosized by either jet or wet milling processes, respectively. The particle sizes of the prepared nanocrystals (100-300 nm) and microcrystals (0.5-16 μm) were characterized by DLS, SEM, and TEM techniques. Solid state characterization by XPRD and DSC was used to confirm the crystalline state of OLM after the milling processes. Results: We demonstrated that OLM nanocrystals enhanced solubility and dissolution in the non-sink condition in which high sensitivity was found in purified water. After 1 h, 65.4% of OLM was dissolved from nanocrystals, while microcrystals and OLMETEC® only showed 37.8% and 31.9% of drug dissolution, respectively. In the pharmacokinetic study using Beagle dogs, an increase in Cmax (~2 fold) and AUC (~1.6 fold) was observed after oral administration of OLM nanocrystals when compared to microcrystals and reference tablets, OLMETEC®. In contrast, OLM microcrystals failed to improve the oral bioavailability of the drugs. Conclusion: Particles size reduction to nano-scale by means of nanocrystals technology significantly increased in vitro dissolution rate and in vivo oral bioavailability of OLM.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 279
Author(s):  
María Fernández-Trapero ◽  
Carmen Pérez-Díaz ◽  
Francisco Espejo-Porras ◽  
Eva de Lago ◽  
Javier Fernández-Ruiz

The phytocannabinoid-based medicine Sativex® is currently marketed for the treatment of spasticity and pain in multiple sclerosis patients and is being investigated for other central and peripheral pathological conditions. It may also serve in Veterinary Medicine for the treatment of domestic animals, in particular for dogs affected by different pathologies, including human-like pathological conditions. With the purpose of assessing different dosing paradigms for using Sativex in Veterinary Medicine, we investigated its pharmacokinetics when administered to naïve dogs via sublingual delivery. In the single dose arm of the study, adult Beagle dogs were treated with 3 consecutive sprays of Sativex, and blood samples were collected at 12 intervals up to 24 h later. In the multiple dose arm of the study, Beagle dogs received 3 sprays daily for 14 days, and blood samples were collected for 24 h post final dose. Blood was used to obtain plasma samples and to determine the levels of cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC) and its metabolite 11-hydroxy-Δ9-THC. Maximal plasma concentrations of both Δ9-THC (Cmax = 18.5 ng/mL) and CBD (Cmax = 10.5 ng/mL) were achieved 2 h after administration in the single dose condition and at 1 h in the multiple dose treatment (Δ9-THC: Cmax = 24.5 ng/mL; CBD: Cmax = 15.2 ng/mL). 11-hydroxy-Δ9-THC, which is mainly formed in the liver from Δ9-THC, was almost undetected, which is consistent with the use of sublingual delivery. A potential progressive accumulation of both CBD and Δ9-THC was detected following repeated exposure, with maximum plasma concentrations for both cannabinoids being achieved following multiple dose. Neurological status, body temperature, respiratory rate and some hemodynamic parameters were also recorded in both conditions, but in general, no changes were observed. In conclusion, this study demonstrates that single or multiple dose sublingual administration of Sativex to naïve dogs results in the expected pharmacokinetic profile, with maximal levels of phytocannabinoids detected at 1–2 h and suggested progressive accumulation after the multiple dose treatment.


2016 ◽  
Vol 30 (6) ◽  
pp. 568-576
Author(s):  
Zouhayr Souirti ◽  
Mouna Loukili ◽  
Imar D. Soudy ◽  
Kaies Rtibi ◽  
Aslihan Özel ◽  
...  

1987 ◽  
Vol 76 (4) ◽  
pp. 286-288 ◽  
Author(s):  
Tadakazu Tokumura ◽  
Yuki Tsushima ◽  
Kimio Tatsuishi ◽  
Masanori Kayano ◽  
Yoshiharu Machida ◽  
...  

2020 ◽  
Author(s):  
J. Stone Doggett ◽  
Tracey Schultz ◽  
Alyssa J. Miller ◽  
Igor Bruzual ◽  
Sovitj Pou ◽  
...  

AbstractToxoplasmosis is a potentially fatal infection for immunocompromised people and the developing fetus. Current medicines for toxoplasmosis have high rates of adverse effects that interfere with therapeutic and prophylactic regimens. Endochin-like quinolones (ELQs) are potent inhibitors of Toxoplasma gondii proliferation in vitro and in animal models of acute and latent infection. ELQ-316, in particular, was found to be effective orally against acute toxoplasmosis in mice and highly selective for the T. gondii cytochrome b over the human cytochrome b. Despite oral efficacy, the high crystallinity of ELQ-316 limits oral absorption, plasma concentrations and therapeutic potential. A carbonate ester prodrug of ELQ-316, ELQ-334, was created to decrease crystallinity and increase oral bioavailability, which resulted in a six-fold increase in both Cmax (maximum plasma concentration) and AUC (area under the curve) of ELQ-316. The increased bioavailability of ELQ-316, when administered as ELQ-334, resulted in greater efficacy than the equivalent dose of ELQ-316 against acute toxoplasmosis and had similar efficacy against latent toxoplasmosis compared to intraperitoneal administration of ELQ-316. Carbonate ester prodrugs are a successful strategy to overcome the limited oral bioavailability of ELQs for the treatment of toxoplasmosis.


1988 ◽  
Vol 34 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Toshio INABA ◽  
Noritoshi KAWATE ◽  
Junichi MORI ◽  
Sentaro TAKAHASHI ◽  
Osamu MATSUOKA

Sign in / Sign up

Export Citation Format

Share Document