scholarly journals Cotranslational folding of a periplasmic protein domain in Escherichia coli

2021 ◽  
Author(s):  
Hena Sandhu ◽  
Rickard Hedman ◽  
Florian Cymer ◽  
Renuka Kudva ◽  
Nurzian Ismail ◽  
...  

AbstractIn Gram-negative bacteria, periplasmic domains in inner membrane proteins are cotranslationally translocated across the inner membrane through the SecYEG translocon. To what degree such domains also start to fold cotranslationally is generally difficult to determine using currently available methods. Here, we apply Force Profile Analysis (FPA) – a method where a translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide – to follow the cotranslational translocation and folding of the large periplasmic domain of the E. coli inner membrane protease LepB in vivo. Membrane insertion of LepB’s two N-terminal transmembrane helices is initiated when their respective N-terminal ends reach 45-50 residues away from the peptidyl transferase center (PTC) in the ribosome. The main folding transition in the periplasmic domain involves all but the ~15 most C-terminal residues of the protein and happens when the C-terminal end of the folded part is ~70 residues away from the PTC; a smaller putative folding intermediate is also detected. This implies that wildtype LepB folds post-translationally in vivo, and shows that FPA can be used to study both co- and post-translational protein folding in the periplasm.

2020 ◽  
Author(s):  
Rageia Elfageih ◽  
Alexandros Karyolaimos ◽  
Grant Kemp ◽  
Jan-Willem de Gier ◽  
Gunnar von Heijne ◽  
...  

AbstractCotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond-containing E. coli protein alkaline phosphatase (PhoA) in a wild-type strain background and a strain background devoid of the periplasmic thiol:disulfide interchange protein DsbA. We find that folding-induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide-stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra-cytosolic compartment, like the periplasm.


2019 ◽  
Author(s):  
Grant Kemp ◽  
Ola B. Nilsson ◽  
Pengfei Tian ◽  
Robert B. Best ◽  
Gunnar von Heijne

AbstractProteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using Force Profile Analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other’s folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in pN. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.SignificanceIn living cells, proteins are produced in a sequential way by ribosomes. This vectoral process allows the growing protein chain to start to fold before translation has been completed. Thereby, cotranslational protein folding can be significantly different than the folding of a full-length protein in isolation. Here we show how structurally similar repeat domains, normally produced as parts of a single long polypeptide, affect the cotranslational folding of their neighbors. This provides insight into how the cell may efficiently produce multidomain proteins, paving the way for future studies in vivo or with chaperones. We also provide an estimated magnitude of the mechanical force on the nascent chain generated by cotranslational folding, calculated from biochemical measurements and molecular dynamics simulations.


2020 ◽  
Author(s):  
Marija Liutkute ◽  
Manisankar Maiti ◽  
Ekaterina Samatova ◽  
Jörg Enderlein ◽  
Marina V. Rodnina

ABSTRACTNascent polypeptides begin to fold in the constrained space of the ribosomal peptide exit tunnel. Here we use force profile analysis (FPA) and photo-induced energy-transfer fluorescence correlation spectroscopy (PET-FCS) to show how a small α-helical domain, the N-terminal domain of HemK, folds cotranslationally. Compaction starts vectorially as soon as the first α-helical segments are synthesized. As nascent chain grows, emerging helical segments dock onto each other and continue to rearrange at the vicinity of the ribosome. Inside or in the proximity of the ribosome, the nascent peptide undergoes structural fluctuations on the μs time scale. The fluctuations slow down as the domain moves away from the ribosome. Folding mutations have little effect on folding within the exit tunnel, but abolish the final domain stabilization. The results show the power of FPA and PET-FCS in solving the trajectory of cotranslational protein folding and in characterizing the dynamic properties of folding intermediates.


Parasitology ◽  
2018 ◽  
Vol 145 (12) ◽  
pp. 1600-1612 ◽  
Author(s):  
Kirti Gupta ◽  
Ankit Gupta ◽  
Afreen Haider ◽  
Saman Habib

AbstractRibosome assembly is critical for translation and regulating the response to cellular events and requires a complex interplay of ribosomal RNA and proteins with assembly factors. We investigated putative participants in the biogenesis of the reduced organellar ribosomes of Plasmodium falciparum and identified homologues of two assembly GTPases – EngA and Obg that were found in mitochondria. Both are indispensable in bacteria and P. berghei EngA is among the ‘essential’ parasite blood stage proteins identified recently. PfEngA and PfObg1 interacted with parasite mitoribosomes in vivo. GTP stimulated PfEngA interaction with the 50S subunit of Escherichia coli surrogate ribosomes. Although PfObg1–ribosome interaction was independent of nucleotide binding, GTP hydrolysis by PfObg1 was enhanced upon ribosomal association. An additional function for PfObg1 in mitochondrial DNA transactions was suggested by its specific interaction with the parasite mitochondrial genome in vivo. Deletion analysis revealed that the positively-charged OBG (spoOB-associated GTP-binding protein) domain mediates DNA-binding. A role for PfEngA in mitochondrial genotoxic stress response was indicated by its over-expression upon methyl methanesulfonate-induced DNA damage. PfEngA had lower sensitivity to an E. coli EngA inhibitor suggesting differences with bacterial counterparts. Our results show the involvement of two important GTPases in P. falciparum mitochondrial function, with the first confirmed localization of an EngA homologue in eukaryotic mitochondria.


2020 ◽  
Vol 117 (25) ◽  
pp. 14119-14126 ◽  
Author(s):  
Grant Kemp ◽  
Ola B. Nilsson ◽  
Pengfei Tian ◽  
Robert B. Best ◽  
Gunnar von Heijne

Proteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using force profile analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other’s folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in piconewtons. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.


2018 ◽  
Author(s):  
Grant Kemp ◽  
Renuka Kudva ◽  
Andrés de la Rosa ◽  
Gunnar von Heijne

AbstractWe have characterized the cotranslational folding of two small protein domains of different folds – the a-helical N-terminal domain of HemK and the β-rich FLN5 filamin domain – by measuring the force that the folding protein exerts on the nascent chain when located in different parts of the ribosome exit tunnel (Force-Profile Analysis - FPA), allowing us to compare FPA to three other techniques currently used to study cotranslational folding: real-time FRET, PET, and NMR. We find that FPA identifies the same cotranslational folding transitions as do the other methods, and that these techniques therefore reflect the same basic process of cotranslational folding in similar ways.


2005 ◽  
Vol 187 (14) ◽  
pp. 4774-4781 ◽  
Author(s):  
Andrew J. Schmidt ◽  
Dmitri A. Ryjenkov ◽  
Mark Gomelsky

ABSTRACT The EAL domain (also known as domain of unknown function 2 or DUF2) is a ubiquitous signal transduction protein domain in the Bacteria. Its involvement in hydrolysis of the novel second messenger cyclic dimeric GMP (c-di-GMP) was demonstrated in vivo but not in vitro. The EAL domain-containing protein Dos from Escherichia coli was reported to hydrolyze cyclic AMP (cAMP), implying that EAL domains have different substrate specificities. To investigate the biochemical activity of EAL, the E. coli EAL domain-containing protein YahA and its individual EAL domain were overexpressed, purified, and characterized in vitro. Both full-length YahA and the EAL domain hydrolyzed c-di-GMP into linear dimeric GMP, providing the first biochemical evidence that the EAL domain is sufficient for phosphodiesterase activity. This activity was c-di-GMP specific, optimal at alkaline pH, dependent on Mg2+ or Mn2+, strongly inhibited by Ca2+, and independent of protein oligomerization. Linear dimeric GMP was shown to be 5′pGpG. The EAL domain from Dos was overexpressed, purified, and found to function as a c-di-GMP-specific phosphodiesterase, not as a cAMP-specific phosphodiesterase, in contrast to previous reports. The EAL domains can hydrolyze 5′pGpG into GMP, however, very slowly, thus implying that this activity is irrelevant in vivo. Therefore, c-di-GMP is the exclusive substrate of EAL. Multiple-sequence alignment revealed two groups of EAL domains hypothesized to correspond to enzymatically active and inactive domains. The domains in the latter group have mutations in residues conserved in the active domains. The enzymatic inactivity of EAL domains may explain their coexistence with GGDEF domains in proteins possessing c-di-GMP synthase (diguanulate cyclase) activity.


2020 ◽  
Vol 117 (45) ◽  
pp. 28355-28365
Author(s):  
Jonathan Cook ◽  
Tyler C. Baverstock ◽  
Martin B. L. McAndrew ◽  
Phillip J. Stansfeld ◽  
David I. Roper ◽  
...  

FtsEX is a bacterial ABC transporter that regulates the activity of periplasmic peptidoglycan amidases via its interaction with the murein hydrolase activator, EnvC. InEscherichia coli, FtsEX is required to separate daughter cells after cell division and for viability in low-osmolarity media. Both the ATPase activity of FtsEX and its periplasmic interaction with EnvC are required for amidase activation, but the process itself is poorly understood. Here we present the 2.1 Å structure of the FtsX periplasmic domain in complex with its periplasmic partner, EnvC. The EnvC-FtsX periplasmic domain complex has a 1-to-2 stoichiometry with two distinct FtsX-binding sites located within an antiparallel coiled coil domain of EnvC. Residues involved in amidase activation map to a previously identified groove in the EnvC LytM domain that is here found to be occluded by a “restraining arm” suggesting a self-inhibition mechanism. Mutational analysis, combined with bacterial two-hybrid screens and in vivo functional assays, verifies the FtsEX residues required for EnvC binding and experimentally test a proposed mechanism for amidase activation. We also define a predicted link between FtsEX and integrity of the outer membrane. Both the ATPase activity of FtsEX and its periplasmic interaction with EnvC are required for resistance to membrane-attacking antibiotics and detergents to whichE. coliwould usually be considered intrinsically resistant. These structural and functional data provide compelling mechanistic insight into FtsEX-mediated regulation of EnvC and its downstream control of periplasmic peptidoglycan amidases.


Sign in / Sign up

Export Citation Format

Share Document