multidomain proteins
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 31)

H-INDEX

29
(FIVE YEARS 3)

Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Samuel Naudi-Fabra ◽  
Martin Blackledge ◽  
Sigrid Milles

Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single molecule fluorescence to decipher the molecular properties of IDPs and their interactions. We shed light on how these two techniques were employed synergistically for multidomain proteins harboring intrinsically disordered linkers, for veritable IDPs, but also for liquid–liquid phase separated systems. Additionally, we provide insights into the first approaches to use single molecule Förster resonance energy transfer (FRET) and NMR for the description of multiconformational models of IDPs.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Andrew Hutchin ◽  
Charlotte Cordery ◽  
Martin A. Walsh ◽  
Jeremy S. Webb ◽  
Ivo Tews

To adjust to a variety of life conditions, bacteria typically use multidomain proteins, where the modular structure allows functional differentiation. Proteins responding to environmental cues and regulating physiological responses are found in chemotaxis pathways that respond to a wide range of stimuli to effect movement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramon Roca-Pinilla ◽  
Ravi Holani ◽  
Adrià López-Cano ◽  
Cristina Saubi ◽  
Ricardo Baltà-Foix ◽  
...  

AbstractCombining several innate immune peptides into a single recombinant antimicrobial and immunomodulatory polypeptide has been recently demonstrated. However, the versatility of the multidomain design, the role that each domain plays and how the sequence edition of the different domains affects their final protein activity is unknown. Parental multidomain antimicrobial and immunomodulatory protein JAMF1 and several protein variants (JAMF1.2, JAMF2 and AM2) have been designed and recombinantly produced to explore how the tuning of domain sequences affects their immunomodulatory potential in epithelial cells and their antimicrobial capacity against Gram-positive and Gram-negative bacteria. The replacement of the sequence of defensin HD5 and phospholipase sPLA2 by shorter active fragments of both peptides improves the final immunomodulatory (IL-8 secretion) and antimicrobial function of the multidomain protein against antimicrobial-resistant Klebsiella pneumoniae and Enterococcus spp. Further, the presence of Jun and Fos leucine zippers in multidomain proteins is crucial in preventing toxic effects on producer cells. The generation of antimicrobial proteins based on multidomain polypeptides allows specific immunomodulatory and antimicrobial functions, which can be easily edited by modifying of each domain sequence.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dukas Jurėnas ◽  
Leonardo Talachia Rosa ◽  
Martial Rey ◽  
Julia Chamot-Rooke ◽  
Rémi Fronzes ◽  
...  

AbstractBacteria have evolved toxins to outcompete other bacteria or to hijack host cell pathways. One broad family of bacterial polymorphic toxins gathers multidomain proteins with a modular organization, comprising a C-terminal toxin domain fused to a N-terminal domain that adapts to the delivery apparatus. Polymorphic toxins include bacteriocins, contact-dependent growth inhibition systems, and specialized Hcp, VgrG, PAAR or Rhs Type VI secretion (T6SS) components. We recently described and characterized Tre23, a toxin domain fused to a T6SS-associated Rhs protein in Photorhabdus laumondii, Rhs1. Here, we show that Rhs1 forms a complex with the T6SS spike protein VgrG and the EagR chaperone. Using truncation derivatives and cross-linking mass spectrometry, we demonstrate that VgrG-EagR-Rhs1 complex formation requires the VgrG C-terminal β-helix and the Rhs1 N-terminal region. We then report the cryo-electron-microscopy structure of the Rhs1-EagR complex, demonstrating that the Rhs1 central region forms a β-barrel cage-like structure that encapsulates the C-terminal toxin domain, and provide evidence for processing of the Rhs1 protein through aspartyl autoproteolysis. We propose a model for Rhs1 loading on the T6SS, transport and delivery into the target cell.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arik Shams ◽  
Sean A. Higgins ◽  
Christof Fellmann ◽  
Thomas G. Laughlin ◽  
Benjamin L. Oakes ◽  
...  

AbstractProteins evolve through the modular rearrangement of elements known as domains. Extant, multidomain proteins are hypothesized to be the result of domain accretion, but there has been limited experimental validation of this idea. Here, we introduce a technique for genetic minimization by iterative size-exclusion and recombination (MISER) for comprehensively making all possible deletions of a protein. Using MISER, we generate a deletion landscape for the CRISPR protein Cas9. We find that the catalytically-dead Streptococcus pyogenes Cas9 can tolerate large single deletions in the REC2, REC3, HNH, and RuvC domains, while still functioning in vitro and in vivo, and that these deletions can be stacked together to engineer minimal, DNA-binding effector proteins. In total, our results demonstrate that extant proteins retain significant modularity from the accretion process and, as genetic size is a major limitation for viral delivery systems, establish a general technique to improve genome editing and gene therapy-based therapeutics.


2021 ◽  
Author(s):  
Papita Mandal ◽  
Zhadyra Yerkesh ◽  
Vladlena Kharchenko ◽  
Levani Zandarashvili ◽  
Dalila Bensaddek ◽  
...  

Chromatin marks are recognized by distinct binding modules many of which are embedded in multidomain proteins or complexes. How the different protein functionalities of complex chromatin modulators are regulated is often unclear. Using a combination of biochemical, biophysical and structural approaches we delineated the regulation of the H3unmodified and H3K9me binding activities of the multidomain UHRF1 protein. The phosphoinositide PI5P interacts with two distant flexible linker regions of UHRF1 in a mode that is dependent on the polar head group and the acyl part of the phospholipid. The associated conformational rearrangements stably position the H3unmodified and H3K9me3 histone recognition modules of UHRF1 for multivalent and synergistic binding of the H3 tail. Our work highlights a novel molecular function for PI5P outside of the context of lipid mono- or bilayers and establishes a molecular paradigm for the allosteric regulation of complex, multidomain chromatin modulators by small cellular molecules.


2021 ◽  
Vol 118 (23) ◽  
pp. e2101349118
Author(s):  
Fiona Whelan ◽  
Aleix Lafita ◽  
James Gilburt ◽  
Clément Dégut ◽  
Samuel C. Griffiths ◽  
...  

Changes at the cell surface enable bacteria to survive in dynamic environments, such as diverse niches of the human host. Here, we reveal “Periscope Proteins” as a widespread mechanism of bacterial surface alteration mediated through protein length variation. Tandem arrays of highly similar folded domains can form an elongated rod-like structure; thus, variation in the number of domains determines how far an N-terminal host ligand binding domain projects from the cell surface. Supported by newly available long-read genome sequencing data, we propose that this class could contain over 50 distinct proteins, including those implicated in host colonization and biofilm formation by human pathogens. In large multidomain proteins, sequence divergence between adjacent domains appears to reduce interdomain misfolding. Periscope Proteins break this “rule,” suggesting that their length variability plays an important role in regulating bacterial interactions with host surfaces, other bacteria, and the immune system.


2021 ◽  
Vol 118 (21) ◽  
pp. e2020885118
Author(s):  
Mathieu E. Rebeaud ◽  
Saurav Mallik ◽  
Pierre Goloubinoff ◽  
Dan S. Tawfik

Across the Tree of Life (ToL), the complexity of proteomes varies widely. Our systematic analysis depicts that from the simplest archaea to mammals, the total number of proteins per proteome expanded ∼200-fold. Individual proteins also became larger, and multidomain proteins expanded ∼50-fold. Apart from duplication and divergence of existing proteins, completely new proteins were born. Along the ToL, the number of different folds expanded ∼5-fold and fold combinations ∼20-fold. Proteins prone to misfolding and aggregation, such as repeat and beta-rich proteins, proliferated ∼600-fold and, accordingly, proteins predicted as aggregation-prone became 6-fold more frequent in mammalian compared with bacterial proteomes. To control the quality of these expanding proteomes, core chaperones, ranging from heat shock proteins 20 (HSP20s) that prevent aggregation to HSP60, HSP70, HSP90, and HSP100 acting as adenosine triphosphate (ATP)-fueled unfolding and refolding machines, also evolved. However, these core chaperones were already available in prokaryotes, and they comprise ∼0.3% of all genes from archaea to mammals. This challenge—roughly the same number of core chaperones supporting a massive expansion of proteomes—was met by 1) elevation of messenger RNA (mRNA) and protein abundances of the ancient generalist core chaperones in the cell, and 2) continuous emergence of new substrate-binding and nucleotide-exchange factor cochaperones that function cooperatively with core chaperones as a network.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 382
Author(s):  
Laszlo Patthy

Division of labor and establishment of the spatial pattern of different cell types of multicellular organisms require cell type-specific transcription factor modules that control cellular phenotypes and proteins that mediate the interactions of cells with other cells. Recent studies indicate that, although constituent protein domains of numerous components of the genetic toolkit of the multicellular body plan of Metazoa were present in the unicellular ancestor of animals, the repertoire of multidomain proteins that are indispensable for the arrangement of distinct body parts in a reproducible manner evolved only in Metazoa. We have shown that the majority of the multidomain proteins involved in cell–cell and cell–matrix interactions of Metazoa have been assembled by exon shuffling, but there is no evidence for a similar role of exon shuffling in the evolution of proteins of metazoan transcription factor modules. A possible explanation for this difference in the intracellular and intercellular toolkits is that evolution of the transcription factor modules preceded the burst of exon shuffling that led to the creation of the proteins controlling spatial patterning in Metazoa. This explanation is in harmony with the temporal-to-spatial transition hypothesis of multicellularity that proposes that cell differentiation may have predated spatial segregation of cell types in animal ancestors.


2021 ◽  
Vol 134 (3) ◽  
pp. jcs248393
Author(s):  
Josie E. Bircher ◽  
Anthony J. Koleske

ABSTRACTThe well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila. Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein–protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.


Sign in / Sign up

Export Citation Format

Share Document