scholarly journals Cuban history of CRF19 recombinant subtype of HIV-1

2021 ◽  
Author(s):  
Anna Zhukova ◽  
Jakub Voznica ◽  
Miraine Dávila Felipe ◽  
Thu-Hien To ◽  
Lissette Pérez ◽  
...  

AbstractCRF19 is a recombinant form of HIV-1 subtypes D, A1 and G, which was first sampled in Cuba in 1999, but was already present there in 1980s. CRF19 was reported almost uniquely in Cuba, where it accounts for ~25% of new HIV-positive patients and causes rapid progression to AIDS (~ 3 years).We analyzed a large data set comprising ~ 350 pol and env sequences sampled in Cuba over the last 15 years and ~ 350 from Los Alamos database. This data set contained both CRF19 (~ 315), and A1, D and G sequences. We performed and combined analyses for the three A1, G and D regions, using fast maximum likelihood approaches, including: (1) phylogeny reconstruction, (2) spatio-temporal analysis of the virus spread, and ancestral character reconstruction for (3) transmission mode and (4) drug resistance mutations (DRMs). This allowed us to acquire new insights on the CRF19 origin and transmission patterns. We showed that CRF19 recombined between 1966 and 1977, most likely in Cuban community stationed in Congo region. We further investigated CRF19 spread on the Cuban province level, and discovered that the epidemic started in 1970s, most probably in Villa Clara, that it was at first carried by heterosexual transmissions, and then quickly spread in the 1980s within the “men having sex with men” (MSM) community, with multiple transmissions back to heterosexuals. The analysis of the transmission patterns of common DRMs showed mostly acquired drug resistance rather than transmitted one.Our results show a very early introduction of CRF19 in Cuba, which could explain its local epidemiological success. Ignited by a major founder event, the epidemic then followed a similar pattern as other subtypes and CRFs in Cuba. The reason for the short time to AIDS remains to be understood and requires specific surveillance, in Cuba and elsewhere.Author summaryCRF19 is a recombinant form of HIV-1, which causes rapid progression to AIDS (~ 3 years versus 5 – 10 years for other subtypes and CRFs). CRF19 is reported almost uniquely in Cuba, where it is highly prevalent (~ 25%) among newly detected HIV-1 patients. In this study, we found that CRF19 most likely recombined around the 1970s in the Cuban community that was stationed in Democratic Republic of the Congo and Angola at that time. It was introduced very early into the Cuban province of Villa Clara, from where it had several introductions to La Habana in the 1980s and then further spread to other Cuban provinces. The CRF19 epidemic most probably started with heterosexual transmissions, followed in the 1980s by multiple introductions into “men having sex with men” (MSM) community, followed by multiple transmissions back to heterosexuals (often females). The early introduction of CRF19 into Cuba most likely explains its success, not observed in other parts of the world. However, importantly, its rapid progression to AIDS makes it crucial to survey CRF19 sub-epidemics not only in Cuba, but also in other parts of the world having regular exchanges with Cuba.

2021 ◽  
Vol 17 (8) ◽  
pp. e1009786
Author(s):  
Anna Zhukova ◽  
Jakub Voznica ◽  
Miraine Dávila Felipe ◽  
Thu-Hien To ◽  
Lissette Pérez ◽  
...  

CRF19 is a recombinant form of HIV-1 subtypes D, A1 and G, which was first sampled in Cuba in 1999, but was already present there in 1980s. CRF19 was reported almost uniquely in Cuba, where it accounts for ∼25% of new HIV-positive patients and causes rapid progression to AIDS (∼3 years). We analyzed a large data set comprising ∼350 pol and env sequences sampled in Cuba over the last 15 years and ∼350 from Los Alamos database. This data set contained both CRF19 (∼315), and A1, D and G sequences. We performed and combined analyses for the three A1, G and D regions, using fast maximum likelihood approaches, including: (1) phylogeny reconstruction, (2) spatio-temporal analysis of the virus spread, and ancestral character reconstruction for (3) transmission mode and (4) drug resistance mutations (DRMs). We verified these results with a Bayesian approach. This allowed us to acquire new insights on the CRF19 origin and transmission patterns. We showed that CRF19 recombined between 1966 and 1977, most likely in Cuban community stationed in Congo region. We further investigated CRF19 spread on the Cuban province level, and discovered that the epidemic started in 1970s, most probably in Villa Clara, that it was at first carried by heterosexual transmissions, and then quickly spread in the 1980s within the “men having sex with men” (MSM) community, with multiple transmissions back to heterosexuals. The analysis of the transmission patterns of common DRMs found very few resistance transmission clusters. Our results show a very early introduction of CRF19 in Cuba, which could explain its local epidemiological success. Ignited by a major founder event, the epidemic then followed a similar pattern as other subtypes and CRFs in Cuba. The reason for the short time to AIDS remains to be understood and requires specific surveillance, in Cuba and elsewhere.


2020 ◽  
Author(s):  
Susana Posada-Céspedes ◽  
Gert Van Zyl ◽  
Hesam Montazeri ◽  
Jack Kuipers ◽  
Soo-Yon Rhee ◽  
...  

AbstractAlthough combination antiretoviral therapies seem to be effective at controlling HIV-1 infections regardless of the viral subtype, there is increasing evidence for subtype-specific drug resistance mutations. The order and rates at which resistance mutations accumulate in different subtypes also remain poorly understood. Here, we present a methodology for the comparison of mutational pathways in different HIV-1 subtypes, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for inferring mutational pathways from cross-sectional genotype data. We introduce a Monte Carlo sampling scheme for learning H-CBN models on a large number of resistance mutations and develop a statistical test to assess differences in the inferred mutational pathways between two groups. We apply this method to the temporal progression of mutations conferring resistance to the protease inhibitor lopinavir in a large cross-sectional data set of South African individuals living with HIV-1 subtype C, as well as a genotype data set of subtype B infections derived from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort Study. We find strong support for different initial mutational events in the protease, namely at residue 46 in subtype B and at residue 82 in subtype C. Our results also show that mutations can accumulate along various alternative paths within subtypes, as opposed to a unique total temporal ordering. Furthermore, the maximum likelihood mutational networks for subtypes B and C share only 7 edges (Jaccard distance 0.802) and imply many different evolutionary pathways. Beyond HIV drug resistance, the statistical methodology is applicable more generally for the comparison of inferred mutational pathways between any two groups.Author summaryThere is a disparity in the distribution of infections by HIV-1 subtype in the world. Subtype B is predominant in America, Western Europe and Australia, and most therapeutic strategies are based on research and clinical studies on this subtype. However, non-B subtypes represent the majority of global HIV-1 infections; e.g., subtype C alone accounts for nearly half of all HIV-1 infections. We present a statistical framework enabling the comparison of patterns of accumulating mutations in different HIV-1 subtypes. Specifically, we study lopinavir resistance pathways in HIV-1 subtypes B versus C, but the methodology can be generally applied to compare the temporal ordering of genetic events in different subgroups.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ágabo Macêdo da Costa e Silva ◽  
Mônica Nogueira da Guarda Reis ◽  
Thaís Augusto Marinho ◽  
Nara Rúbia de Freitas ◽  
Sheila Araújo Teles ◽  
...  

This study describes human immunodeficiency virus 1 (HIV-1) prevalence, associated factors, viral genetic diversity, transmitted drug resistance (TDR), and acquired drug resistance mutations (DRM) among a population of 522 men who have sex with men (MSM) recruited by the respondent-driven sampling (RDS) method, in Goiânia city, the capital of the State of Goiás, Central-Western Brazil. All serum samples were tested using a four-generation enzyme-linked immunosorbent assay (ELISA), and reactive samples were confirmed by immunoblotting. Plasma RNA or proviral DNA was extracted, and partial polymerase (pol) gene including the protease/reverse transcriptase (PR/RT) region was amplified and sequenced. HIV-1 subtypes were identified by phylogenetic inference and by bootscan analysis. The time and location of the ancestral strains that originated the transmission clusters were estimated by a Bayesian phylogeographic approach. TDR and DRM were identified using the Stanford databases. Overall, HIV-1 prevalence was 17.6% (95% CI: 12.6–23.5). Self-declared black skin color, receptive anal intercourse, sex with drug user partner, and history of sexually transmitted infections were factors associated with HIV-1 infection. Of 105 HIV-1-positive samples, 78 (74.3%) were sequenced and subtyped as B (65.4%), F1 (20.5%), C (3.8%), and BF1 (10.3%). Most HIV-1 subtype B sequences (67%; 34 out of 51) branched within 12 monophyletic clusters of variable sizes, which probably arose in the State of Goiás between the 1980s and 2010s. Most subtype F1 sequences (n = 14, 88%) branched in a single monophyletic cluster that probably arose in Goiás around the late 1990s. Among 78 samples sequenced, three were from patients under antiretroviral therapy (ART); two presented DRM. Among 75 ART-naïve patients, TDR was identified in 13 (17.3%; CI 95%: 9.6–27.8). Resistance mutations to non-nucleoside reverse transcriptase inhibitors (NNRTI) predominated (14.7%), followed by nucleoside reverse transcriptase inhibitor (NRTI) mutations (5.3%) and protease inhibitor (PI) mutations (1.3%). This study shows a high prevalence of HIV-1 associated with sexual risk behaviors, high rate of TDR, and high genetic diversity driven by the local expansion of different subtype B and F1 strains. These findings can contribute to the understanding about the dissemination and epidemiological and molecular characteristics of HIV-1 among the population of MSM living away from the epicenter of epidemics in Brazil.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008363
Author(s):  
Susana Posada-Céspedes ◽  
Gert Van Zyl ◽  
Hesam Montazeri ◽  
Jack Kuipers ◽  
Soo-Yon Rhee ◽  
...  

Although combination antiretroviral therapies seem to be effective at controlling HIV-1 infections regardless of the viral subtype, there is increasing evidence for subtype-specific drug resistance mutations. The order and rates at which resistance mutations accumulate in different subtypes also remain poorly understood. Most of this knowledge is derived from studies of subtype B genotypes, despite not being the most abundant subtype worldwide. Here, we present a methodology for the comparison of mutational networks in different HIV-1 subtypes, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for inferring mutational networks from cross-sectional genotype data. We introduce a Monte Carlo sampling scheme for learning H-CBN models for a larger number of resistance mutations and develop a statistical test to assess differences in the inferred mutational networks between two groups. We apply this method to infer the temporal progression of mutations conferring resistance to the protease inhibitor lopinavir in a large cross-sectional cohort of HIV-1 subtype C genotypes from South Africa, as well as to a data set of subtype B genotypes obtained from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort Study. We find strong support for different initial mutational events in the protease, namely at residue 46 in subtype B and at residue 82 in subtype C. The inferred mutational networks for subtype B versus C are significantly different sharing only five constraints on the order of accumulating mutations with mutation at residue 54 as the parental event. The results also suggest that mutations can accumulate along various alternative paths within subtypes, as opposed to a unique total temporal ordering. Beyond HIV drug resistance, the statistical methodology is applicable more generally for the comparison of inferred mutational networks between any two groups.


2018 ◽  
Vol 34 (7) ◽  
pp. 626-628
Author(s):  
Akarin Hiransuthikul ◽  
Rapeeporn Wongkanya ◽  
Sunee Sirivichayakul ◽  
Deondara Trachunthong ◽  
Thanthip Sungsing ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Minna Zheng ◽  
Maohe Yu ◽  
Shaohui Cheng ◽  
Ning Zhou ◽  
Tielin Ning ◽  
...  

Abstract Background In Tianjin, China, there is a relatively high prevalence of HIV in men who have sex with men (MSM). The number of HIV cases in Tianjin is also increasing. We investigated the HIV molecular transmission network, genetic tropisms, and drug resistance mutations in Tianjin. Methods Blood samples were collected from 510 newly diagnosed antiretroviral therapy (ART)-naïve HIV-1-infected subjects among MSM in Tianjin. Partial pol and env genes were sequenced and used for phylogenetic, genetic tropism, and genotypic drug resistance analyses. Molecular clusters were identified with 1.5% genetic distance and 90% bootstrap support. Results Among the 436 HIV-1 pol sequences obtained from the study participants, various genotypes were identified, including CRF01_AE (56.9%), CRF07_BC (27.8%), B (7.3%), CRF55_01B (4.1%), unique recombinant forms (URFs) (3.7%), and CRF59_01B (0.2%). A higher prevalence of X4 viruses was observed in individuals infected with CRF55_01B (56.3%) and CRF01_AE (46.2%) than with other subtypes. Of all 110 sequences in the 36 clusters, 62 (56.4%) were observed in 23 CRF01_AE clusters and 18 (16.4%) in four CRF07_BC clusters. Eight sequences clustered with at least one other shared the same drug resistance mutation (DRM). In different cluster sizes, the distributions of individuals by age, presence of sexually transmitted disease, and presence of DRMs, were significantly different. Conclusion We revealed the characteristics of HIV molecular transmission, tropism, and DRMs of ART-naïve HIV-infected individuals among the MSM population in Tianjin. Identifying infected persons at risk of transmission is necessary for proposing counseling and treating these patients to reduce the risk of HIV transmission.


2018 ◽  
Vol 23 (44) ◽  
Author(s):  
Andreas Petersen ◽  
Susan A Cowan ◽  
Jens Nielsen ◽  
Thea K Fischer ◽  
Jannik Fonager

This study describes the prevalence of human immunodeficiency virus (HIV) drug resistance mutations among 1,815 patients in Denmark from 2004 to 2016 and characterises transmission clusters. POL sequences were analysed for subtype, drug resistance mutations and phylogenetic relationship. The prevalence of surveillance drug resistance mutations (SDRM) was 6.7%, while the prevalence of drug resistance mutations (DRM) with a clinical impact was 12.3%. We identified 197 transmission clusters with 706 patients. Patients 40 years or older were less likely to be members of a transmission cluster and patients in transmission clusters were less likely to be infected abroad. The proportion of late presenters (LP) was lower in active compared with inactive clusters. Large active clusters consisted of more men who have sex with men (MSM), had members more frequently infected in Denmark and contained a significantly lower proportion of LP and significantly fewer patients with DRM than small active clusters. Subtyping demonstrated that the Danish HIV epidemic is gradually becoming more composed of non-B subtypes/circulating recombinant forms. This study shows that active HIV-1 transmission has become increasingly MSM-dominated and that the recent increase in SDRM and DRM prevalence is not associated with more sustained transmission within identified transmission networks or clusters.


2020 ◽  
Author(s):  
Minna Zheng ◽  
Maohe Yu ◽  
Shaohui Chen ◽  
Ning Zhou ◽  
Tielin Ning ◽  
...  

Abstract BackgroundIn Tianjin, China, there is a relatively high prevalence of HIV in men who have sex with men (MSM). The number of cases of HIV in Tianjin is also increasing. We investigated the HIV molecular transmission network, genetic tropisms, and drug resistance mutations in Tianjin. MethodsBlood samples were collected from 510 newly diagnosed antiretroviral therapy (ART)-naïve HIV-1-infected subjects among MSM in Tianjin. Partial pol and env genes were sequenced and used for phylogenetic, genetic tropism, and genotypic drug resistance analyses. Molecular clusters were identified with 1.5% genetic distance and 90% bootstrap support.ResultsAmong the 436 HIV-1 pol sequences obtained from the study participants, various genotypes were identified, including CRF01_AE (56.9%), CRF07_BC (27.8%), B (7.3%), CRF55_01B (4.1%), unique recombinant forms (URFs) (3.7%), and CRF59_01B (0.2%). A higher prevalence of X4 viruses was observed in individuals infected with CRF55_01B (56.3%) and CRF01_AE (46.2%) than with other subtypes. Of all 110 sequences in the 36 clusters, 62 (56.4%) were observed in 23 CRF01_AE clusters and 18 (16.4%) in four CRF07_BC clusters. Nine sequences clustered with at least one other shared the same drug resistance mutation (DRM). In different cluster sizes, the distributions of individuals by age, presence of sexually transmitted disease, and presence of DRMs, were significantly different. ConclusionWe revealed the characteristics of HIV molecular transmission, tropism, and DRMs of ART-naïve HIV-infected individuals among the MSM population in Tianjin. Identifying infected persons at risk of transmission is necessary for proposing counseling and treating these patients to reduce the risk of HIV transmission.


2018 ◽  
Vol 146 (3) ◽  
pp. 339-344 ◽  
Author(s):  
Y.X. Song ◽  
R.L. Xin ◽  
Z.C. Li ◽  
H.W. Yu ◽  
W.H. Lun ◽  
...  

AbstractTo optimise patients’ outcomes and gain insight into transmitted drug resistance (TDR) among human immunodeficiency virus (HIV)-1 treatment-naive patients in Beijing, the prevalence of TDR was assessed. Demographic and clinical data of 1241 treatment-naive patients diagnosed between April 2014 and February 2015 were collected. TDR was defined using the Stanford University HIV drug resistance mutations database. The risk factors were evaluated by multi-logistic regression analysis. Among 932 successfully amplified cases, most were male (96.78%) and infected through men having sex with men (91.74%). Genotype were CRF01_AE (56.44%), B (20.60%), CRF07_BC (19.96%), C (1.61%) and other genotypes (1.39%). The overall prevalence of TDR was 6.12%. Most frequent mutations occurred in non-nucleoside reverse transcriptase inhibitors (NNRTIs) (3.11%), followed by protease inhibitors (PIs) (2.25%) and nucleoside reverse transcriptase inhibitors (NRTIs) (1.32%). Furthermore, HIV-1 genotype was associated with high risk of resistance, in which genotype C and other genotype may have higher risk for resistance. The prevalence among treatment-naive patients in Beijing was low. Resistance to NNRTIs was higher than with PIs or NRTIs. Continuous monitoring of regional levels of HIV-1 TDRs would contribute to improve treatment outcomes and prevent failures.


2020 ◽  
Author(s):  
Minna Zheng ◽  
Maohe Yu ◽  
Shaohui Chen ◽  
Ning Zhou ◽  
Tielin Ning ◽  
...  

Abstract Background In Tianjin, China, there is a relatively high prevalence of HIV in men who have sex with men (MSM). The number of HIV cases in Tianjin is also increasing. We investigated the HIV molecular transmission network, genetic tropisms, and drug resistance mutations in Tianjin. Methods Blood samples were collected from 510 newly diagnosed antiretroviral therapy (ART)-naïve HIV-1-infected subjects among MSM in Tianjin. Partial pol and env genes were sequenced and used for phylogenetic, genetic tropism, and genotypic drug resistance analyses. Molecular clusters were identified with 1.5% genetic distance and 90% bootstrap support.Results Among the 436 HIV-1 pol sequences obtained from the study participants, various genotypes were identified, including CRF01_AE (56.9%), CRF07_BC (27.8%), B (7.3%), CRF55_01B (4.1%), unique recombinant forms (URFs) (3.7%), and CRF59_01B (0.2%). A higher prevalence of X4 viruses was observed in individuals infected with CRF55_01B (56.3%) and CRF01_AE (46.2%) than with other subtypes. Of all 110 sequences in the 36 clusters, 62 (56.4%) were observed in 23 CRF01_AE clusters and 18 (16.4%) in four CRF07_BC clusters. Eight sequences clustered with at least one other shared the same drug resistance mutation (DRM). In different cluster sizes, the distributions of individuals by age, presence of sexually transmitted disease, and presence of DRMs, were significantly different. Conclusion We revealed the characteristics of HIV molecular transmission, tropism, and DRMs of ART-naïve HIV-infected individuals among the MSM population in Tianjin. Identifying infected persons at risk of transmission is necessary for proposing counseling and treating these patients to reduce the risk of HIV transmission.


Sign in / Sign up

Export Citation Format

Share Document