scholarly journals Molecular epidemiology of human respiratory syncytial virus with severe acute respiratory infection in Huzhou from 2016 to 2019

2021 ◽  
Author(s):  
Deshun Xu ◽  
Lei Ji ◽  
Xiaofang Wu ◽  
Wei Yan ◽  
Liping Chen

AbstractBackgroundHuman respiratory syncytial virus (HRSV) is one of the major cause of acute lower respiratory infection in infants, the elderly and people with low immunity worldwide. Based on antigenic and genetic variations, Human respiratory syncytial virus is divided into two subgroups (A and B). Each of the subgroups is further categorized into genotypes based on the phylogenetic analyses of the sequences of the second hypervariable region.MethodsNasopharyngeal swabs (NPSs) were collected from patients of the First People’s Hospital in Huzhou from January 2016 to December 2019. Real-time RT-PCR (qPCR) was performed using double nucleic acid detection kit for respiratory syncytial virus (A\B) (Shenzhen shengkeyuan) with the ABI Q7 (Applied Biosystems). For genotyping, the primer set A-F/A-R was used to amplify the G protein of HRSV-A. Primer set B-F/B-R was used to amplify the G protein of HRSV-B. The phylogenetic analysis was constructed using the neighbor-joining algorithm with the Kimura two-parameter model and supported statistically by bootstrapping with 1000 replicates with MEGA software (version 7.0) with 1000 bootstrap replicates.ResultsA total of 973 nasopharyngeal swab samples were collected from January 2016 to December 2019, and 63 samples were positive for RSV nucleic acid, with the detection rate of 6.47%. Of the positive specimens, 28 were belonged to HRSV-A, and 35 were belonged to HRSV-B. Infection with RSV was found in all age groups tested, with the 0-1 year age group having the highest detection rate 15.2%. The detection rate was high from November to next March. Phylogenetic analysis clustered HRSV-A strains identified in Huzhou into ON1genotype. All 17 of the HRSV-B strains belonged to BA9 genotype.ConclusionsWe analyzed the HRSV strains circulation in Huzhou from January 2016 to December 2019 in Huzhou, China. This is the first molecular analysis on HRSV in Huzhou. We found Subgroup A and B of RSV were co-circulating and the 0-1 year age group having the highest infection rate.

2006 ◽  
Vol 80 (2) ◽  
pp. 975-984 ◽  
Author(s):  
Alfonsina Trento ◽  
Mariana Viegas ◽  
Mónica Galiano ◽  
Cristina Videla ◽  
Guadalupe Carballal ◽  
...  

ABSTRACT A total of 47 clinical samples were identified during an active surveillance program of respiratory infections in Buenos Aires (BA) (1999 to 2004) that contained sequences of human respiratory syncytial virus (HRSV) with a 60-nucleotide duplication in the attachment (G) protein gene. This duplication was analogous to that previously described for other three viruses also isolated in Buenos Aires in 1999 (A. Trento et al., J. Gen. Virol. 84:3115-3120, 2003). Phylogenetic analysis indicated that BA sequences with that duplication shared a common ancestor (dated about 1998) with other HRSV G sequences reported worldwide after 1999. The duplicated nucleotide sequence was an exact copy of the preceding 60 nucleotides in early viruses, but both copies of the duplicated segment accumulated nucleotide substitutions in more recent viruses at a rate apparently higher than in other regions of the G protein gene. The evolution of the viruses with the duplicated G segment apparently followed the overall evolutionary pattern previously described for HRSV, and this genotype has replaced other prevailing antigenic group B genotypes in Buenos Aires and other places. Thus, the duplicated segment represents a natural tag that can be used to track the dissemination and evolution of HRSV in an unprecedented setting. We have taken advantage of this situation to reexamine the molecular epidemiology of HRSV and to explore the natural history of this important human pathogen.


2009 ◽  
Vol 5 (1) ◽  
pp. e1000254 ◽  
Author(s):  
Viviane F. Botosso ◽  
Paolo M. de A. Zanotto ◽  
Mirthes Ueda ◽  
Eurico Arruda ◽  
Alfredo E. Gilio ◽  
...  

Heliyon ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. e01394
Author(s):  
Vitor Brassolatti Machado ◽  
Jéssica Maróstica de Sá ◽  
Ana Karla Miranda Prado ◽  
Karina Alves de Toledo ◽  
Luis Octávio Regasini ◽  
...  

2003 ◽  
Vol 84 (11) ◽  
pp. 3115-3120 ◽  
Author(s):  
Alfonsina Trento ◽  
Mónica Galiano ◽  
Cristina Videla ◽  
Guadalupe Carballal ◽  
Blanca García-Barreno ◽  
...  

2005 ◽  
Vol 79 (14) ◽  
pp. 9157-9167 ◽  
Author(s):  
Kalina T. Zlateva ◽  
Philippe Lemey ◽  
Elien Moës ◽  
Anne-Mieke Vandamme ◽  
Marc Van Ranst

ABSTRACT Human respiratory syncytial virus (HRSV) is the most important cause of acute respiratory disease in infants. Two major subgroups (A and B) have been identified based on antigenic differences in the attachment G protein. Antigenic variation between and within the subgroups may contribute to reinfections with these viruses by evading the host immune responses. To investigate the circulation patterns and mechanisms by which HRSV-B viruses evolve, we analyzed the G protein genetic variability of subgroup B sequences isolated over a 45-year period, including 196 Belgian strains obtained over 22 epidemic seasons (1982 to 2004). Our study revealed that the HRSV-B evolutionary rate (1.95 × 10−3 nucleotide substitutions/site/year) is similar to that previously estimated for HRSV-A (1.83 × 10−3 nucleotide substitutions/site/year). However, natural HRSV-B isolates appear to accommodate more drastic changes in their attachment G proteins. The most recent common ancestor of the currently circulating subgroup B strains was estimated to date back to around the year 1949. The divergence between the two major subgroups was calculated to have occurred approximately 350 years ago. Furthermore, we have identified 12 positively selected sites in the G protein ectodomain, suggesting that immune-driven selective pressure operates in certain codon positions. HRSV-A and -B strains have similar phylodynamic patterns: both subgroups are characterized by global spatiotemporal strain dynamics, where the high infectiousness of HRSV permits the rapid geographic spread of novel strain variants.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Li Li ◽  
Heping Wang ◽  
Ailiang Liu ◽  
Rongjun Wang ◽  
Tingting Zhi ◽  
...  

Abstract Background The effect of SARS-CoV-2 on existing respiratory pathogens in circulation remains uncertain. This study aimed to assess the impact of SARS-CoV-2 on the prevalence of respiratory pathogens among hospitalized children. Methods This study enrolled hospitalized children with acute respiratory infections in Shenzhen Children’s Hospital from September to December 2019 (before the COVID-19 epidemic) and those from September to December 2020 (during the COVID-19 epidemic). Nasopharyngeal swabs were collected, and respiratory pathogens were detected using multiplex PCR. The absolute case number and detection rates of 11 pathogens were collected and analyzed. Results A total of 5696 children with respiratory tract infection received multiplex PCR examination for respiratory pathogens: 2298 from September to December 2019 and 3398 from September to December 2020. At least one pathogen was detected in 1850 (80.5%) patients in 2019, and in 2380 (70.0%) patients in 2020; the detection rate in 2020 was significantly lower than that in 2019.The Influenza A (InfA) detection rate was 5.6% in 2019, but 0% in 2020. The detection rates of Mycoplasma pneumoniae, Human adenovirus, and Human rhinovirus also decreased from 20% (460), 8.9% (206), and 41.8% (961) in 2019 to 1.0% (37), 2.1% (77), and 25.6% (873) in 2020, respectively. In contrast, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased from 6.6% (153), 9.9% (229), and 0.5% (12) in 2019 to 25.6% (873), 15.5% (530), and 7.2% (247) in 2020, respectively (p < 0.0001). Conclusions Successful containment of seasonal influenza as a result of COVID-19 control measures will ensure we are better equipped to deal with future outbreaks of both influenza and COVID-19.Caused by virus competition, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased in Shenzhen,that reminds us we need to take further monitoring and preventive measures in the next epidemic season.


2006 ◽  
Vol 80 (21) ◽  
pp. 10465-10477 ◽  
Author(s):  
Antonius G. P. Oomens ◽  
Kevin P. Bevis ◽  
Gail W. Wertz

ABSTRACT The importance of the F protein cytoplasmic tail (CT) for replication of human respiratory syncytial virus (HRSV) was examined by monitoring the behavior of viruses expressing F proteins with a modified COOH terminus. The F protein mutant viruses were recovered and amplified under conditions where F protein function was complemented by expression of a heterologous viral envelope protein. The effect of the F protein modifications was then examined in the context of a viral infection in standard cell types (Vero and HEp-2). The F protein modifications consisted of a deletion of the predicted CT or a replacement of the CT with the CT of the vesicular stomatitis virus (VSV) G protein. In addition, engineered HRSVs that lacked all homologous glycoprotein genes (SH, G, and F) and expressed instead either the authentic VSV G protein or a VSV G containing the HRSV F protein CT were examined. We found that deletion or replacement of the F protein CT seriously impaired the production of infectious progeny. Cells infected with viruses bearing CT modifications displayed increased F protein surface expression and increased syncytium formation. The distribution of F protein in the plasma membrane of infected cells was altered, resulting in an F protein that was evenly distributed rather than localized predominantly to virus-induced surface filaments. CT deletion or exchange also abrogated interaction of F protein with Triton-insoluble lipid rafts. Addition of the F protein CT to the VSV G protein, expressed as the only viral glycoprotein in an HRSV genome, had the opposite effects: the number of infectious progeny was higher, the surface distribution was changed from relatively even to localized, and the proportion of VSV G protein associated with lipid rafts was higher. Together, these results show that the HRSV F protein CT plays a critical role in F protein cellular localization and production of infectious virus and suggest that the function provided by the CT is independent of the F protein ectodomain and transmembrane domain and is mediated by F protein-lipid raft interaction.


2011 ◽  
Vol 58 (2) ◽  
pp. 97-102
Author(s):  
Farid Azizi Jalilian ◽  
Fatemeh Jahanshiri ◽  
Zamberi Sekawi ◽  
Abdul Rahman Omar ◽  
Khatijah Yusoff

Sign in / Sign up

Export Citation Format

Share Document