scholarly journals Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities

2021 ◽  
Author(s):  
Man-Young Jung ◽  
Christopher J. Sedlacek ◽  
K. Dimitri Kits ◽  
Anna J. Mueller ◽  
Sung-Keun Rhee ◽  
...  

AbstractNitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co- occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrosocosmicus have the lowest substrate affinity of any characterized AOA, which are similar to previously determined affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values strongly supports the hypothesis that – like for AOB – ammonia and not ammonium is the substrate for the ammonia monooxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on competition between AOB, AOA, and comammox.

2021 ◽  
Author(s):  
Man-Young Jung ◽  
Christopher J. Sedlacek ◽  
K. Dimitri Kits ◽  
Anna J. Mueller ◽  
Sung-Keun Rhee ◽  
...  

AbstractNitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrosocosmicus have the lowest affinity for both ammonia and total ammonium of any characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values supports the hypothesis that—like for AOB—ammonia and not ammonium is the substrate for the ammonia monooxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on competition between AOB, AOA, and comammox.


Author(s):  
Elizabeth French ◽  
Jessica A. Kozlowski ◽  
Annette Bollmann

In the environment, nutrients are rarely available in constant supply. Therefore, microorganisms require strategies to compete for limiting nutrients. In freshwater systems, ammonia-oxidizing archaea (AOA) and bacteria (AOB) compete with heterotrophic bacteria, photosynthetic microorganisms, and each other for ammonium, which AOA and AOB utilize as their sole source of energy and nitrogen. We investigated the competition between highly enriched cultures of an AOA (AOA-AC1) and an AOB (AOB-G5-7) for ammonium. Based on the amoA gene, the newly enriched archaeal ammonia oxidizer in AOA-AC1 was closely related to Nitrosotenuis spp. and the bacterial ammonia oxidizer in AOB-G5-7, Nitrosomonas sp. Is79, belonged to the Nitrosomonas oligotropha group ( Nitrosomonas cluster 6a). Growth experiments in batch cultures showed that AOB-G5-7 had higher growth rates than AOA-AC1 at higher ammonium concentrations. During chemostat competition experiments under ammonium-limiting conditions, AOA-AC1 dominated the cultures, while AOB-G5-7 decreased in abundance. In batch cultures, the outcome of the competition between AOA and AOB was determined by the initial ammonium concentrations. AOA-AC1 was the dominant ammonia oxidizer at an initial ammonium concentration of 50 μM and AOB-G5-7 at 500 μM. These findings indicate that, during direct competition, AOA-AC1 was able to use ammonium that was unavailable to AOB-G5-7, while AOB-G5-7 dominated at higher ammonium concentrations. The results are in strong accordance with environmental survey data suggesting that AOA are mainly responsible for ammonia oxidation under more oligotrophic conditions, whereas AOB dominate under eutrophic conditions. Importance Nitrification is an important process in the global nitrogen cycle. The first step - ammonia oxidation to nitrite – can be carried out by Ammonia-oxidizing Archaea (AOA) and Ammonia-oxidizing Bacteria (AOB). In many natural environments, these ammonia oxidizers coexist. Therefore, it is important to understand the population dynamics in response to increasing ammonium concentrations. Here, we study the competition between AOA and AOB enriched from freshwater systems. The results demonstrate that AOA are more abundant in systems with low ammonium availabilities and AOB when the ammonium availability increases. These results will help to predict potential shifts in community composition of ammonia oxidizers in the environment due to changes in ammonium availability.


2020 ◽  
Vol 11 ◽  
Author(s):  
João Pereira Santos ◽  
António G. G. Sousa ◽  
Hugo Ribeiro ◽  
Catarina Magalhães

Aerobic nitrification is a fundamental nitrogen biogeochemical process that links the oxidation of ammonia to the removal of fixed nitrogen in eutrophicated water bodies. However, in estuarine environments there is an enormous variability of water physicochemical parameters that can affect the ammonia oxidation biological process. For instance, it is known that salinity can affect nitrification performance, yet there is still a lack of information on the ammonia-oxidizing communities behavior facing daily salinity fluctuations. In this work, laboratory experiments using upstream and downstream estuarine sediments were performed to address this missing gap by comparing the effect of daily salinity fluctuations with constant salinity on the activity and diversity of ammonia-oxidizing microorganisms (AOM). Activity and composition of AOM were assessed, respectively by using nitrogen stable isotope technique and 16S rRNA gene metabarcoding analysis. Nitrification activity was negatively affected by daily salinity fluctuations in upstream sediments while no effect was observed in downstream sediments. Constant salinity regime showed clearly higher rates of nitrification in upstream sediments while a similar nitrification performance between the two salinity regimes was registered in the downstream sediments. Results also indicated that daily salinity fluctuation regime had a negative effect on both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) community’s diversity. Phylogenetically, the estuarine downstream AOM were dominated by AOA (0.92–2.09%) followed by NOB (0.99–2%), and then AOB (0.2–0.32%); whereas NOB dominated estuarine upstream sediment samples (1.4–9.5%), followed by AOA (0.27–0.51%) and AOB (0.01–0.23%). Analysis of variance identified the spatial difference between samples (downstream and upstream) as the main drivers of AOA and AOB diversity. Our study indicates that benthic AOM inhabiting different estuarine sites presented distinct plasticity toward the salinity regimes tested. These findings help to improve our understanding in the dynamics of the nitrogen cycle of estuarine systems by showing the resilience and consequently the impact of different salinity regimes on the diversity and activity of ammonia oxidizer communities.


1991 ◽  
Vol 37 (11) ◽  
pp. 828-833 ◽  
Author(s):  
W. T. Smorczewski ◽  
E. L. Schmidt

The microbiological and chemical potential for ammonia oxidation in a freshwater, eutrophic lake sediment was examined in relation to environmental changes caused by seasonal, dimictic circulation. Poulations of both ammonia and nitrite oxidizers as estimated by most probable number (MPN) were sustained throughout extended anaerobic summer intervals, with nitrite oxidizers outnumbering ammonia oxidizers by a factor ranging from 3.0 to 8.1. Ammonia oxidation potential on a per cell basis was affected by seasonal changes and was seen to decrease as oxygen was removed from the sediments. Pure-culture isolations from a positive MPN tube inoculated with oxygenated sediment and representing a single point in a seasonal cycle produced ammonia-oxidizing strains belonging to the genus Nitrosospira. These strains did not react with known ammonia-oxidizer serotypes and, therefore, extend the serological diversity of this group of bacteria. An immunofluorescence analysis of MPN tubes from sediment collected during a period of lake stratification revealed progressive changes in the diversity of the ammonia-oxidizer population. The genera Nitrosomonas, Nitrosolobus, and Nitrosospira, including the novel serotype of Nitrosospira isolated from the sediment a year earlier, were found to coexist in well-oxygenated sediment. This diversity was seen to disappear, with Nistrosomonas surviving, as anaerobic conditions persisted. Key words: ammonia oxidizers, lake sediments, nitrifiers, nitrification.


2021 ◽  
Author(s):  
Michelle M McKnight ◽  
Josh D Neufeld

Nitrification by aquarium biofilters transforms toxic ammonia waste (NH3/NH4+) to less toxic nitrate (NO3-) via nitrite (NO2-). Ammonia oxidation is mediated by ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and the recently discovered complete ammonia oxidizing (comammox) Nitrospira. Prior to the discovery of comammox Nitrospira, previous research revealed that AOA dominate among ammonia oxidizers in freshwater biofilters. Here, we characterized the composition of aquarium filter microbial communities and quantified the abundance of all three known groups of ammonia oxidizers. Aquarium biofilter and water samples were collected from representative freshwater and saltwater systems in Southwestern Ontario, Canada. Using extracted DNA, we performed 16S rRNA gene sequencing and quantitative PCR (qPCR) to assess community composition and quantify the abundance of amoA genes, respectively. Our results show that aquarium biofilter microbial communities were consistently represented by putative heterotrophs of the Proteobacteria and Bacteroides phyla, with distinct profiles associated with fresh versus saltwater biofilters. Among nitrifiers, comammox Nitrospira amoA genes were detected in all 38 freshwater aquarium biofilter samples and were the most abundant ammonia oxidizer in 30 of these samples, with the remaining biofilters dominated by AOA, based on amoA gene abundances. In saltwater biofilters, AOA or AOB were differentially abundant, with no comammox Nitrospira detected. These results demonstrate that comammox Nitrospira play an important role in biofilter nitrification that has been previously overlooked and such microcosms are useful for exploring the ecology of nitrification for future research.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
A. E. Bernhard ◽  
J. Beltz ◽  
A. E. Giblin ◽  
B. J. Roberts

AbstractFew studies have focused on broad scale biogeographic patterns of ammonia oxidizers in coastal systems, yet understanding the processes that govern them is paramount to understanding the mechanisms that drive biodiversity, and ultimately impact ecosystem processes. Here we present a meta-analysis of 16 years of data of ammonia oxidizer abundance, diversity, and activity in New England (NE) salt marshes and 5 years of data from marshes in the Gulf of Mexico (GoM). Potential nitrification rates were more than 80x higher in GoM compared to NE marshes. However, nitrifier abundances varied between regions, with ammonia-oxidizing archaea (AOA) and comammox bacteria significantly greater in GoM, while ammonia-oxidizing bacteria (AOB) were more than 20x higher in NE than GoM. Total bacterial 16S rRNA genes were also significantly greater in GoM marshes. Correlation analyses of rates and abundance suggest that AOA and comammox are more important in GoM marshes, whereas AOB are more important in NE marshes. Furthermore, ratios of nitrifiers to total bacteria in NE were as much as 80x higher than in the GoM, suggesting differences in the relative importance of nitrifiers between these systems. Communities of AOA and AOB were also significantly different between the two regions, based on amoA sequences and DNA fingerprints (terminal restriction fragment length polymorphism). Differences in rates and abundances may be due to differences in salinity, temperature, and N loading between the regions, and suggest significantly different N cycling dynamics in GoM and NE marshes that are likely driven by strong environmental differences between the regions.


2013 ◽  
Vol 10 (11) ◽  
pp. 7395-7410 ◽  
Author(s):  
A. E. Santoro ◽  
C. M. Sakamoto ◽  
J. M. Smith ◽  
J. N. Plant ◽  
A. L. Gehman ◽  
...  

Abstract. Nitrite (NO2−) is a substrate for both oxidative and reductive microbial metabolism. NO2− accumulates at the base of the euphotic zone in oxygenated, stratified open-ocean water columns, forming a feature known as the primary nitrite maximum (PNM). Potential pathways of NO2− production include the oxidation of ammonia (NH3) by ammonia-oxidizing bacteria and archaea as well as assimilatory nitrate (NO3−) reduction by phytoplankton and heterotrophic bacteria. Measurements of NH3 oxidation and NO3− reduction to NO2− were conducted at two stations in the central California Current in the eastern North Pacific to determine the relative contributions of these processes to NO2− production in the PNM. Sensitive (< 10 nmol L−1), precise measurements of [NH4+] and [NO2−] indicated a persistent NH4+ maximum overlying the PNM at every station, with concentrations as high as 1.5 μmol L−1. Within and just below the PNM, NH3 oxidation was the dominant NO2− producing process, with rates of NH3 oxidation to NO2− of up to 31 nmol L−1 d−1, coinciding with high abundances of ammonia-oxidizing archaea. Though little NO2− production from NO3− was detected, potentially nitrate-reducing phytoplankton (photosynthetic picoeukaryotes, Synechococcus, and Prochlorococcus) were present at the depth of the PNM. Rates of NO2− production from NO3− were highest within the upper mixed layer (4.6 nmol L−1 d−1) but were either below detection limits or 10 times lower than NH3 oxidation rates around the PNM. One-dimensional modeling of water column NO2− production agreed with production determined from 15N bottle incubations within the PNM, but a modeled net biological sink for NO2− just below the PNM was not captured in the incubations. Residence time estimates of NO2− within the PNM ranged from 18 to 470 days at the mesotrophic station and was 40 days at the oligotrophic station. Our results suggest the PNM is a dynamic, rather than relict, feature with a source term dominated by ammonia oxidation.


2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Ling Wu ◽  
Cheng Han ◽  
Guangwei Zhu ◽  
Wenhui Zhong

ABSTRACTAmmonium concentrations and temperature drive the activities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), but their effects on these microbes in eutrophic freshwater sediments are unclear. In this study, surface sediments collected from areas of Taihu Lake (China) with different degrees of eutrophication were incubated under three levels of nitrogen input and temperature, and the autotrophic growth of ammonia oxidizers was assessed using13C-labeled DNA-based stable-isotope probing (SIP), while communities were characterized using MiSeq sequencing and phylogenetic analysis of 16S rRNA genes. Nitrification rates in sediment microcosms were positively correlated with nitrogen inputs, but there was no marked association with temperature. Incubation of SIP microcosms indicated that AOA and AOBamoAgenes were labeled by13C at 20°C and 30°C in the slightly eutrophic sediment, and AOBamoAgenes were labeled to a much greater extent than AOAamoAgenes in the moderately eutrophic sediment after 56 days. Phylogenetic analysis of13C-labeled 16S rRNA genes revealed that the active AOA were mainly affiliated with theNitrosopumiluscluster, with theNitrososphaeracluster dominating in the slightly eutrophic sediment at 30°C with low ammonium input (1 mM). Active AOB communities were more sensitive to nitrogen input and temperature than were AOA communities, and they were exclusively dominated by theNitrosomonascluster, which tended to be associated withNitrosomonadaceae-like lineages.Nitrosomonassp. strain Is79A3 tended to dominate the moderately eutrophic sediment at 10°C with greater ammonium input (2.86 mM). The relative abundance responses of the major active communities to nitrogen input and temperature gradients varied, indicating niche differentiation and differences in the physiological metabolism of ammonia oxidizers that are yet to be described.IMPORTANCEBoth archaea and bacteria contribute to ammonia oxidation, which plays a central role in the global cycling of nitrogen and is important for reducing eutrophication in freshwater environments. The abundance and activities of ammonia-oxidizing archaea and bacteria in eutrophic limnic sediments vary with different ammonium concentrations or with seasonal shifts, and how the two factors affect nitrification activity, microbial roles, and active groups in different eutrophic sediments is unclear. The significance of our research is in identifying the archaeal and bacterial responses to anthropogenic activity and climate change, which will greatly enhance our understanding of the physiological metabolic differences of ammonia oxidizers.


2013 ◽  
Vol 79 (22) ◽  
pp. 6911-6916 ◽  
Author(s):  
Tatsunori Nakagawa ◽  
David A. Stahl

ABSTRACTThe ability of chemoautotrophic ammonia-oxidizing archaea to compete for ammonia among marine microorganisms at low ambient concentrations has been in part attributed to their extremely high affinity for ammonia, but as yet there is no mechanistic understanding of supporting metabolism. We examined transcription of selected genes for anabolic functions (CO2fixation, ammonia transport, and cell wall synthesis) and a central catabolic function (ammonia oxidation) in the thaumarchaeonNitrosopumilus maritimusSCM1 growing at two ammonia concentrations, as measured by combined ammonia and ammonium, one well above theKmfor ammonia oxidation (∼500 μM) and the other well below theKm(<10 nM). Transcript levels were generally immediately and differentially repressed when cells transitioned from ammonia-replete to ammonia-limiting conditions. Transcript levels for ammonia oxidation, CO2fixation, and one of the ammonia transport genes were approximately the same at high and low ammonia availability. Transcripts for all analyzed genes decreased with time in the complete absence of ammonia, but with various rates of decay. The new steady-state mRNA levels established are presumably more reflective of the natural physiological state of ammonia-oxidizing archaea and offer a reference for interpreting message abundance patterns in the natural environment.


Science ◽  
2011 ◽  
Vol 333 (6047) ◽  
pp. 1282-1285 ◽  
Author(s):  
Alyson E. Santoro ◽  
Carolyn Buchwald ◽  
Matthew R. McIlvin ◽  
Karen L. Casciotti

The ocean is an important global source of nitrous oxide (N2O), a greenhouse gas that contributes to stratospheric ozone destruction. Bacterial nitrification and denitrification are thought to be the primary sources of marine N2O, but the isotopic signatures of N2O produced by these processes are not consistent with the marine contribution to the global N2O budget. Based on enrichment cultures, we report that archaeal ammonia oxidation also produces N2O. Natural-abundance stable isotope measurements indicate that the produced N2O had bulk δ15N and δ18O values higher than observed for ammonia-oxidizing bacteria but similar to the δ15N and δ18O values attributed to the oceanic N2O source to the atmosphere. Our results suggest that ammonia-oxidizing archaea may be largely responsible for the oceanic N2O source.


Sign in / Sign up

Export Citation Format

Share Document