scholarly journals Optimal BR signalling is required for adequate cell wall orientation in the Arabidopsis root meristem

2021 ◽  
Author(s):  
Zhenni Li ◽  
Ayala Sela ◽  
Yulia Fridman ◽  
Herman Höfte ◽  
Sigal Savaldi-Goldstein ◽  
...  

AbstractThe plant steroid hormones brassinosteroids (BRs) regulate growth in part through altering the properties of the cell wall, the extracellular matrix of plant cells. Conversely, cell wall signalling connects the state of cell wall homeostasis to the BR receptor complex and modulates BR activity. Here we report that both pectin-triggered cell wall signalling and impaired BR signalling result in altered cell wall orientation in the Arabidopsis root meristem. BR-induced defects in the orientation of newly placed walls are associated with aberrant localization of the cortical division zone but with normal specification of its positioning. Tissue- specific perturbations of BR signalling revealed that the cellular malfunction is unrelated to previously described whole organ growth defects. Thus, tissue type separates the pleiotropic effects of cell wall/BR signals and highlights their importance during cell wall placement.

2020 ◽  
Vol 13 (11) ◽  
pp. 1594-1607 ◽  
Author(s):  
Xiaoting Lu ◽  
Hongyong Shi ◽  
Yang Ou ◽  
Yanwei Cui ◽  
Jinke Chang ◽  
...  

1993 ◽  
Vol 3 (5) ◽  
pp. 637-646 ◽  
Author(s):  
Jian-Kang Zhu ◽  
Jun Shi ◽  
Utpal Singh ◽  
Sarah E. Wyatt ◽  
Ray A. Bressan ◽  
...  

Author(s):  
Eliza Louback ◽  
Diego Silva Batista ◽  
Tiago Augusto Rodrigues Pereira ◽  
Talita Cristina Mamedes-Rodrigues ◽  
Tatiane Dulcineia Silva ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1665
Author(s):  
Natalia Nikonorova ◽  
Evan Murphy ◽  
Cassio Flavio Fonseca de Lima ◽  
Shanshuo Zhu ◽  
Brigitte van de Cotte ◽  
...  

Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxin-controlled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.


Microbiology ◽  
2014 ◽  
Vol 160 (11) ◽  
pp. 2387-2395 ◽  
Author(s):  
Hechun Jiang ◽  
Feifei Liu ◽  
Shizhu Zhang ◽  
Ling Lu

P-type Ca2+-transporting ATPases are Ca2+ pumps, extruding cytosolic Ca2+ to the extracellular environment or the intracellular Ca2+ store lumens. In budding yeast, Pmr1 (plasma membrane ATPase related), and Pmc1 (plasma membrane calcium-ATPase) cannot be deleted simultaneously for it to survive in standard medium. Here, we deleted two putative Ca2+ pumps, designated AnPmrA and AnPmcA, from Aspergillus nidulans, and obtained the mutants ΔanpmrA and ΔanpmcA, respectively. Then, using ΔanpmrA as the starting strain, the promoter of its anpmcA was replaced with the alcA promoter to secure the mutant ΔanpmrAalcApmcA or its anpmcA was deleted completely to produce the mutant ΔanpmrAΔpmcA. Different from the case in Saccharomyces cerevisiae, double deletion of anpmrA and anpmcA was not lethal in A. nidulans. In addition, deletion of anpmrA and/or anpmcA had produced growth defects, although overexpression of AnPmc1 in ΔanpmrAalcApmcA could not restore the growth defects that resulted from the loss of AnPmrA. Moreover, we found AnPmrA was indispensable for maintenance of normal morphogenesis, especially in low-Ca2+/Mn2+ environments. Thus, our findings suggest AnPmrA and AnPmcA might play important roles in growth, morphogenesis and cell wall integrity in A. nidulans in a different way from that in yeasts.


Sign in / Sign up

Export Citation Format

Share Document