scholarly journals A tandem-repeat dimeric RBD protein-based COVID-19 vaccine ZF2001 protects mice and nonhuman primates

2021 ◽  
Author(s):  
Yaling An ◽  
Shihua Li ◽  
Xiyue Jin ◽  
Jian-bao Han ◽  
Kun Xu ◽  
...  

AbstractA safe, efficacious and deployable vaccine is urgently needed to control COVID-19 pandemic. We report here the preclinical development of a COVID-19 vaccine candidate, ZF2001, which contains tandem-repeat dimeric receptor-binding domain (RBD) protein with alum-based adjuvant. We assessed vaccine immunogenicity and efficacy in both mice and non-human primates (NHPs). ZF2001 induced high levels of RBD-binding and SARS-CoV-2 neutralizing antibody in both mice and NHPs, and also elicited balanced TH1/TH2 cellular responses in NHPs. Two doses of ZF2001 protected Ad-hACE2-transduced mice against SARS-CoV-2 infection, as detected by reduced viral RNA and relieved lung injuries. In NHPs, vaccination of either 25 μg or 50 μg ZF2001 prevented infection with SARS-CoV-2 in lung, trachea and bronchi, with milder lung lesions. No evidence of disease enhancement is observed in both models. ZF2001 is being evaluated in the ongoing international multi-center Phase 3 trials (NCT04646590) and has been approved for emergency use in Uzbekistan.

2021 ◽  
Vol 7 (22) ◽  
pp. eabg7156
Author(s):  
So-Hee Hong ◽  
Hanseul Oh ◽  
Yong Wook Park ◽  
Hye Won Kwak ◽  
Eun Young Oh ◽  
...  

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 307
Author(s):  
Yong Bok Seo ◽  
You Suk Suh ◽  
Ji In Ryu ◽  
Hwanhee Jang ◽  
Hanseul Oh ◽  
...  

The unprecedented and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) has motivated the need for a rapidly producible and scalable vaccine. Here, we developed a synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19. In mice, immunization with GX-19 elicited not only S-specific systemic and pulmonary antibody responses but also Th1-biased T cell responses in a dose-dependent manner. GX-19-vaccinated nonhuman primates seroconverted rapidly and exhibited a detectable neutralizing antibody response as well as multifunctional CD4+ and CD8+ T cell responses. Notably, when the immunized nonhuman primates were challenged at 10 weeks after the last vaccination with GX-19, they had reduced viral loads in contrast to non-vaccinated primates as a control. These findings indicate that GX-19 vaccination provides a durable protective immune response and also support further development of GX-19 as a vaccine candidate for SARS-CoV-2.


2020 ◽  
Author(s):  
Yong Bok Seo ◽  
You Suk Suh ◽  
Ji In Ryu ◽  
Hwanhee Jang ◽  
Hanseul Oh ◽  
...  

SummaryThe unprecedented and rapid spread of SARS-CoV-2 has motivated the need for a rapidly producible and scalable vaccine. Here, we developed a synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19. In mice, immunization with GX-19 elicited not only S-specific systemic and pulmonary antibody responses but also Th1-biased T cell responses in a dose-dependent manner. GX-19 vaccinated nonhuman primate seroconverted rapidly and exhibited detectable neutralizing antibody response as well as multifunctional CD4+ and CD8+ T cell responses. Notably, when the immunized nonhuman primates were challenged at 10 weeks after the last vaccination with GX-19, they did not develop fever and reduced viral loads in contrast to non-vaccinated primates as a control. These findings indicate that GX-19 vaccination provides durable protective immune response and also support further development of GX-19 as a vaccine candidate for SARS-CoV-2 in human clinical trials.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Zezhong Liu ◽  
Wei Xu ◽  
Shuai Xia ◽  
Chenjian Gu ◽  
Xinling Wang ◽  
...  

AbstractThe pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious threats to global health and economy, thus calling for the development of safe and effective vaccines. The receptor-binding domain (RBD) in the spike protein of SARS-CoV-2 is responsible for its binding to angiotensin-converting enzyme 2 (ACE2) receptor. It contains multiple dominant neutralizing epitopes and serves as an important antigen for the development of COVID-19 vaccines. Here, we showed that immunization of mice with a candidate subunit vaccine consisting of SARS-CoV-2 RBD and Fc fragment of human IgG, as an immunopotentiator, elicited high titer of RBD-specific antibodies with robust neutralizing activity against both pseudotyped and live SARS-CoV-2 infections. The mouse antisera could also effectively neutralize infection by pseudotyped SARS-CoV-2 with several natural mutations in RBD and the IgG extracted from the mouse antisera could also show neutralization against pseudotyped SARS-CoV and SARS-related coronavirus (SARSr-CoV). Vaccination of human ACE2 transgenic mice with RBD-Fc could effectively protect mice from the SARS-CoV-2 challenge. These results suggest that SARS-CoV-2 RBD-Fc has good potential to be further developed as an effective and broad-spectrum vaccine to prevent infection of the current SARS-CoV-2 and its mutants, as well as future emerging SARSr-CoVs and re-emerging SARS-CoV.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1346
Author(s):  
Jennifer K. DeMarco ◽  
Joshua M. Royal ◽  
William E. Severson ◽  
Jon D. Gabbard ◽  
Steve Hume ◽  
...  

We developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is stable for up to 12 months at 2–8 or 22–28 °C. Here, we showed that this vaccine induces a strong neutralizing antibody response in K18-hACE2 mice. Furthermore, we demonstrated that immunization protects mice from virus-associated mortality and symptomatic disease. Our data indicated that a sufficient pre-existing pool of neutralizing antibodies is required to restrict SARS-CoV-2 replication upon exposure and prevent induction of inflammatory mediators associated with severe disease. Finally, we identified a potential role for CXCL5 as a protective cytokine in SARS-CoV-2 infection. Our results suggested that disruption of the CXCL5 and CXCL1/2 axis may be important early components of the inflammatory dysregulation that is characteristic of severe cases of COVID-19.


Vaccine ◽  
2017 ◽  
Vol 35 (37) ◽  
pp. 4952-4959 ◽  
Author(s):  
Vladimir Savransky ◽  
Jeffry D. Shearer ◽  
Melicia R. Gainey ◽  
Daniel C. Sanford ◽  
Gloria S. Sivko ◽  
...  

2021 ◽  
Vol 7 (12) ◽  
pp. eabf1591
Author(s):  
Linling He ◽  
Xiaohe Lin ◽  
Ying Wang ◽  
Ciril Abraham ◽  
Cindy Sou ◽  
...  

Vaccination against SARS-CoV-2 provides an effective tool to combat the COVID-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system. We then identified heptad repeat 2 (HR2) in S2 as the cause of spike metastability, designed an HR2-deleted glycine-capped spike (S2GΔHR2), and displayed S2GΔHR2 on SApNPs. An antibody column specific for the RBD enabled tag-free vaccine purification. In mice, the 24-meric RBD-ferritin SApNP elicited a more potent neutralizing antibody (NAb) response than the RBD alone and the spike with two stabilizing proline mutations in S2 (S2P). S2GΔHR2 elicited twofold higher NAb titers than S2P, while S2GΔHR2 SApNPs derived from multilayered E2p and I3-01v9 60-mers elicited up to 10-fold higher NAb titers. The S2GΔHR2-presenting I3-01v9 SApNP also induced critically needed T cell immunity, thereby providing a promising vaccine candidate.


2021 ◽  
Author(s):  
Jeroen Pollet ◽  
Ulrich Strych ◽  
Wen-Hsiang Chen ◽  
Leroy Versteeg ◽  
Brian Keegan ◽  
...  

We conducted preclinical studies in mice using a yeast-produced SARS-CoV-2 RBD219-N1C1 subunit vaccine candidate formulated with aluminum hydroxide (alum) and CpG deoxynucleotides. This vaccine formulation is similar to one that entered advanced phase 3 clinical development in India. We compared the immune response of mice vaccinated with RBD219-N1C1/alum to mice vaccinated with RBD219-N1C1/alum+CpG. We also evaluated mice immunized with RBD219-N1C1/alum+CpG and boosted with RBD219-N1C1/alum. Mice were immunized twice intramuscularly at a 21-day interval. Compared to two doses of the RBD219-N1C1/alum formulation, the RBD219-N1C1/alum+CpG vaccine induced a stronger and more balanced Th1/Th2 cellular immune response, with high levels of neutralizing antibodies against the original Wuhan isolate of SARS-CoV-2 as well as the B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.1 (Kappa) variants. Notably, the sera from mice that received two 7 μg doses of RBD219-N1C1/alum+CpG showed more than 18 times higher neutralizing antibody titers against B.1.351, than the WHO International Standard for anti-SARS-CoV-2 immunoglobulin NIBSC 20/136. Interestingly, a booster dose did not require the addition of CpG to induce this effect. The data reported here reinforces that the RBD219-N1C1/alum+CpG vaccine formulation is suitable for inducing broadly neutralizing antibodies against SARS-CoV-2 including three variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.1 (Kappa).


2021 ◽  
Author(s):  
Kun Xu ◽  
Yaling An ◽  
Qunlong Li ◽  
Weijin Huang ◽  
Yuxuan Han ◽  
...  

AbstractA safe and effective vaccine is urgently needed to control the unprecedented COVID-19 pandemic. Four adenovirus vectored vaccines expressing spike (S) protein have advanced into phase 3 trials, with three approved for use. Here, we generated several recombinant chimpanzee adenovirus (AdC7) vaccines expressing S, receptor-binding domain (RBD) or dimeric tandem-repeat RBD (RBD-tr2). We found vaccination via either intramuscular or intranasal route was highly immunogenic in mice to elicit both humoral and cellular (Th1-based) immune responses. AdC7-RBD-tr2 showed higher antibody responses compared with both AdC7-S and AdC7-RBD. Intranasal administration of AdC7-RBD-tr2 additionally induced mucosal immunity with neutralizing activity in bronchoalveolar lavage fluid. Either single-dose or two-dose mucosal administration of AdC7-RBD-tr2 protected mice against SARS-CoV-2 challenge, with undetectable subgenomic RNA in lung and relieved lung injury. These results support AdC7-RBD-tr2 as a promising COVID-19 vaccine candidate.


2021 ◽  
Author(s):  
Brian J. Ward ◽  
Philipe Gobeil ◽  
Annie Séguin ◽  
Judith Atkins ◽  
Iohann Boulay ◽  
...  

AbstractSeveral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are being deployed, but the global need greatly exceeds the supply, and different formulations might be required for specific populations. Here we report Day 42 interim safety and immunogenicity data from an observer-blinded, dose escalation, randomized controlled study of a virus-like particle vaccine candidate produced in plants that displays the SARS-CoV-2 spike glycoprotein (CoVLP: NCT04450004). The co-primary outcomes were the short-term tolerability/safety and immunogenicity of CoVLP formulations assessed by neutralizing antibody (NAb) and cellular responses. Secondary outcomes in this ongoing study include safety and immunogenicity assessments up to 12 months after vaccination. Adults (18–55 years, n = 180) were randomized at two sites in Quebec, Canada, to receive two intramuscular doses of CoVLP (3.75 μg, 7.5 μg, and 15 μg) 21 d apart, alone or adjuvanted with AS03 or CpG1018. All formulations were well tolerated, and adverse events after vaccination were generally mild to moderate, transient and highest in the adjuvanted groups. There was no CoVLP dose effect on serum NAbs, but titers increased significantly with both adjuvants. After the second dose, NAbs in the CoVLP + AS03 groups were more than tenfold higher than titers in Coronavirus 2019 convalescent sera. Both spike protein-specific interferon-γ and interleukin-4 cellular responses were also induced. This pre-specified interim analysis supports further evaluation of the CoVLP vaccine candidate.


Sign in / Sign up

Export Citation Format

Share Document