scholarly journals Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex

Author(s):  
Brandon Malone ◽  
James Chen ◽  
Qi Wang ◽  
Eliza Llewellyn ◽  
Young Joo Choi ◽  
...  

AbstractBacktracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA-protein crosslinking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3’-segment of the product-RNA generated by backtracking extrudes through the RdRp NTP-entry tunnel, that a mismatched nucleotide at the product-RNA 3’-end frays and enters the NTP-entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals.Significance StatementThe COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 genome is replicated and transcribed by its RNA-dependent RNA polymerase (RdRp), which is the target for antivirals such as remdesivir. We use a combination of approaches to show that backtracking (backwards motion of the RdRp on the template RNA) is a feature of SARS-CoV-2 replication/transcription. Backtracking may play a critical role in proofreading, a crucial process for SARS-CoV-2 resistance against many antivirals.

2021 ◽  
Vol 118 (19) ◽  
pp. e2102516118
Author(s):  
Brandon Malone ◽  
James Chen ◽  
Qi Wang ◽  
Eliza Llewellyn ◽  
Young Joo Choi ◽  
...  

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA–protein cross-linking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3′ segment of the product RNA generated by backtracking extrudes through the RdRp nucleoside triphosphate (NTP) entry tunnel, that a mismatched nucleotide at the product RNA 3′ end frays and enters the NTP entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals.


Science ◽  
2021 ◽  
pp. eabf3546
Author(s):  
Pramod R. Bhatt ◽  
Alain Scaiola ◽  
Gary Loughran ◽  
Marc Leibundgut ◽  
Annika Kratzel ◽  
...  

Programmed ribosomal frameshifting is a key event during translation of the SARS-CoV-2 RNA genome allowing synthesis of the viral RNA-dependent RNA polymerase and downstream proteins. Here we present the cryo-electron microscopy structure of a translating mammalian ribosome primed for frameshifting on the viral RNA. The viral RNA adopts a pseudoknot structure that lodges at the entry to the ribosomal mRNA channel to generate tension in the mRNA and promote frameshifting, whereas the nascent viral polyprotein forms distinct interactions with the ribosomal tunnel. Biochemical experiments validate the structural observations and reveal mechanistic and regulatory features that influence frameshifting efficiency. Finally, we compare compounds previously shown to reduce frameshifting with respect to their ability to inhibit SARS-CoV-2 replication, establishing coronavirus frameshifting as a target for antiviral intervention.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Goran Kokic ◽  
Hauke S. Hillen ◽  
Dimitry Tegunov ◽  
Christian Dienemann ◽  
Florian Seitz ◽  
...  

AbstractRemdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryo-electron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3ʹ-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3ʹ-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3ʹ-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication.


Author(s):  
Goran Kokic ◽  
Hauke S. Hillen ◽  
Dimitry Tegunov ◽  
Christian Dienemann ◽  
Florian Seitz ◽  
...  

Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients1–4. The active form of remdesivir acts as a nucleoside analogue and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-25–7. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls6,8. Here we use synthetic RNA chemistry, biochemistry and cryo-electron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3’-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3’-nucleotide of the RNA product is matched with the template base, and this may prevent proofreading by the viral 3’-exonuclease that recognizes mismatches9,10. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication.


2008 ◽  
Vol 283 (18) ◽  
pp. 12227-12231 ◽  
Author(s):  
Anindito Sen ◽  
J. Bernard Heymann ◽  
Naiqian Cheng ◽  
Jian Qiao ◽  
Leonard Mindich ◽  
...  

Science ◽  
2018 ◽  
Vol 362 (6414) ◽  
pp. 595-598 ◽  
Author(s):  
Tomoya Kujirai ◽  
Haruhiko Ehara ◽  
Yuka Fujino ◽  
Mikako Shirouzu ◽  
Shun-ichi Sekine ◽  
...  

Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo–electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(−6), SHL(−5), SHL(−2), and SHL(−1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(−1) complexes are bound to a “foreign” DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.


BIOspektrum ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 49-53
Author(s):  
Patrick Cramer ◽  
Goran Kokic ◽  
Christian Dienemann ◽  
Claudia Höbartner ◽  
Hauke S. Hillen

AbstractCoronaviruses use an RNA-dependent RNA polymerase to replicate and transcribe their RNA genome. The structure of the SARS-CoV-2 polymerase was determined by cryo-electron microscopy within a short time in spring 2020. The structure explains how the viral enzyme synthesizes RNA and how it replicates the exceptionally large genome in a processive manner. The most recent structure-function studies further reveal the mechanism of polymerase inhibition by remdesivir, an approved drug for the treatment of COVID-19.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jin Young Kang ◽  
Eliza Llewellyn ◽  
James Chen ◽  
Paul Dominic B Olinares ◽  
Joshua Brewer ◽  
...  

Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (ECs). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.


2020 ◽  
Author(s):  
Jin Young Kang ◽  
Eliza Llewellyn ◽  
James Chen ◽  
Paul Dominic B. Olinares ◽  
Joshua Brewer ◽  
...  

SummaryTranscription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (EC). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.


Sign in / Sign up

Export Citation Format

Share Document