transcription coupled repair
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 20)

H-INDEX

38
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunli Yan ◽  
Thomas Dodd ◽  
Jina Yu ◽  
Bernice Leung ◽  
Jun Xu ◽  
...  

AbstractTranscription-coupled repair is essential for the removal of DNA lesions from the transcribed genome. The pathway is initiated by CSB protein binding to stalled RNA polymerase II. Mutations impairing CSB function cause severe genetic disease. Yet, the ATP-dependent mechanism by which CSB powers RNA polymerase to bypass certain lesions while triggering excision of others is incompletely understood. Here we build structural models of RNA polymerase II bound to the yeast CSB ortholog Rad26 in nucleotide-free and bound states. This enables simulations and graph-theoretical analyses to define partitioning of this complex into dynamic communities and delineate how its structural elements function together to remodel DNA. We identify an allosteric pathway coupling motions of the Rad26 ATPase modules to changes in RNA polymerase and DNA to unveil a structural mechanism for CSB-assisted progression past less bulky lesions. Our models allow functional interpretation of the effects of Cockayne syndrome disease mutations.


Author(s):  
Marit E. Geijer ◽  
Di Zhou ◽  
Kathiresan Selvam ◽  
Barbara Steurer ◽  
Chirantani Mukherjee ◽  
...  

Author(s):  
Marit E. Geijer ◽  
Di Zhou ◽  
Kathiresan Selvam ◽  
Barbara Steurer ◽  
Chirantani Mukherjee ◽  
...  

2021 ◽  
Author(s):  
Bo Xia ◽  
Itai Yanai

Abstract Of all mammalian organs, the testis has long been observed to have the most diverse gene expression profile. To account for this widespread gene expression, we have proposed a mechanism termed ‘transcriptional scanning’, which reduces germline mutation rates through transcription-coupled repair (TCR). Our hypothesis contrasts with an earlier observation that mutation rates are overall positively correlated with gene expression levels in yeast, implying that transcription is mutagenic due to transcription-coupled damage (TCD). Here we report evidence that the compound effects of both TCR and TCD during spermatogenesis tune germline mutation rates in human, with TCR dominating in most genes, thus supporting the transcriptional scanning hypothesis. Our analyses address potentially confounding factors, distinguish the differential mutagenic effects acting on the highly expressed genes and the low-to-moderately expressed genes, and resolve concerns relating to the validation of the results using a de novo mutation dataset. We also discuss the theoretical possibility of transcriptional scanning hypothesis from an evolutionary perspective. Together, these analyses support a model by which the coupling of transcription-coupled repair and damage establishes the pattern of germline mutation rates and provide an evolutionary explanation for widespread gene expression during spermatogenesis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jin Young Kang ◽  
Eliza Llewellyn ◽  
James Chen ◽  
Paul Dominic B Olinares ◽  
Joshua Brewer ◽  
...  

Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (ECs). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.


2020 ◽  
Vol 295 (50) ◽  
pp. 17374-17380 ◽  
Author(s):  
Christopher P. Selby ◽  
Laura A. Lindsey-Boltz ◽  
Yanyan Yang ◽  
Aziz Sancar

In nucleotide excision repair, bulky DNA lesions such as UV-induced cyclobutane pyrimidine dimers are removed from the genome by concerted dual incisions bracketing the lesion, followed by gap filling and ligation. So far, two dual-incision patterns have been discovered: the prokaryotic type, which removes the damage in 11–13-nucleotide-long oligomers, and the eukaryotic type, which removes the damage in 24–32-nucleotide-long oligomers. However, a recent study reported that the UvrC protein of Mycobacterium tuberculosis removes damage in a manner analogous to yeast and humans in a 25-mer oligonucleotide arising from incisions at 15 nt from the 3´ end and 9 nt from the 5´ end flanking the damage. To test this model, we used the in vivo excision assay and the excision repair sequencing genome-wide repair mapping method developed in our laboratory to determine the repair pattern and genome-wide repair map of Mycobacterium smegmatis. We find that M. smegmatis, which possesses homologs of the Escherichia coli uvrA, uvrB, and uvrC genes, removes cyclobutane pyrimidine dimers from the genome in a manner identical to the prokaryotic pattern by incising 7 nt 5´ and 3 or 4 nt 3´ to the photoproduct, and performs transcription-coupled repair in a manner similar to E. coli.


Sign in / Sign up

Export Citation Format

Share Document