scholarly journals First-in-Human Trial of a Recombinant Stabilized Prefusion SARS-CoV-2 Spike Protein Vaccine with Adjuvant of Aluminum Hydroxide and CpG 1018

Author(s):  
Szu-Min Hsieh ◽  
Wang-Da Liu ◽  
Yu-Shan Huang ◽  
Yi-Jiun Lin ◽  
Erh-Fang Hsieh ◽  
...  

Design This is a phase 1, dose-escalation open-label trial to evaluate the safety and immunogenicity of MVC-COV1901, a recombinant stabilized prefusion SARS-CoV-2 spike (S-2P) protein vaccine with adjuvant of aluminum hydroxide and CpG 1018. Methods We enrolled 45 healthy adults from 20 to 49 years of age to be administered with two vaccinations of MVC-COV1901 in a low dose (LD), middle dose (MD), and high dose (HD) of spike protein at 28 days apart. There were 15 participants in each dose group, and all of them were followed up for 28 days after the second vaccination at the time of interim analysis. Adverse events (AEs) and laboratory data were recorded for safety evaluation. Blood samples were collected for wild-type SARS-CoV-2 and pseudovirus neutralization assays as well as SARS-CoV-2 spike-specific immunoglobulin G (IgG) at various times. Overall, the study duration will be 7 months. Results Solicited events were mostly mild and similar in the participants of all three dose groups. No subject experienced fever. There were no serious nor adverse events of special interest at the time point of this interim report. After the second vaccination, the SARS-CoV-2 spike specific IgG titers increased with peak geometric mean titers at 7178.245 (LD), 7746.086 (MD), and 11220.58 (HD), respectively. Serum neutralizing activity was detected by two methods in all participants of MD and HD groups, with geometric mean values generally comparable to those of a panel of control convalescent serum specimens. All of the participants in the MD and HD groups were seroconverted after the second vaccination. Conclusions The MVC-COV1901 vaccine is safe and elicits remarkable immune responses especially in the MD and HD groups.

Author(s):  
Fiona V Cresswell ◽  
David B Meya ◽  
Enock Kagimu ◽  
Daniel Grint ◽  
Lindsey te Brake ◽  
...  

Abstract Background High-dose rifampicin may improve outcomes of tuberculous meningitis (TBM). Little safety or pharmacokinetic (PK) data exist on high-dose rifampicin in HIV co-infection, and no cerebrospinal fluid (CSF) PK data exist from Africa. We hypothesized that high-dose rifampicin would increase serum and CSF concentrations without excess toxicity. Methods In this phase II open-label trial, Ugandan adults with suspected TBM were randomised to standard-of-care control (PO-10, rifampicin 10mg/kg/day), intravenous rifampicin (IV-20, 20mg/kg/day), or high-dose oral rifampicin (PO-35, 35mg/kg/day). We performed PK sampling on day 2 and 14. The primary outcomes were total exposure (AUC0-24), maximum concentration (Cmax), CSF concentration and grade 3-5 adverse events. Results We enrolled 61 adults, 92% were HIV-positive, median CD4 count was 50cells/µL (IQR 46–56). On day 2, geometric mean plasma AUC0-24hr was 42.9h.mg/L with standard-of-care 10mg/kg dosing, 249h.mg/L for IV-20 and 327h.mg/L for PO-35 (P<0.001). In CSF, standard-of-care achieved undetectable rifampicin concentration in 56% of participants and geometric mean AUC0-24hr 0.27mg/L, compared with 1.74mg/L (95%CI 1.2–2.5) for IV-20 and 2.17mg/L (1.6–2.9) for PO-35 regimens (p<0.001). Achieving CSF concentrations above rifampicin minimal inhibitory concentration (MIC) occurred in 11% (2/18) of standard-of-care, 93% (14/15) of IV-20, and 95% (18/19) of PO-35 participants. Higher serum and CSF levels were sustained at day 14. Adverse events did not differ by dose (p=0.34) Conclusion Current international guidelines result in sub-therapeutic CSF rifampicin concentration for 89% of Ugandan TBM patients. High-dose intravenous and oral rifampicin were safe, and respectively resulted in exposures ~6- and ~8-fold higher than standard-of-care, and CSF levels above the MIC


2020 ◽  
Vol 222 (6) ◽  
pp. 979-988 ◽  
Author(s):  
Kristi Williams ◽  
Arangassery Rosemary Bastian ◽  
Robert Allen Feldman ◽  
Edmund Omoruyi ◽  
Els de Paepe ◽  
...  

Abstract Background Despite the high disease burden of respiratory syncytial virus (RSV) in older adults, there is no approved vaccine. We evaluated the experimental RSV vaccine, Ad26.RSV.preF, a replication-incompetent adenovirus 26 vector encoding the F protein stabilized in prefusion conformation. Methods This phase 1 clinical trial was performed in healthy adults aged ≥60 years. Seventy-two participants received 1 or 2 intramuscular injections of low-dose (LD; 5 × 1010 vector particles) or high-dose (HD; 1 × 1011 vector particles) Ad26.RSV.preF vaccine or placebo, with approximately 12 months between doses and 2-year follow-up for safety and immunogenicity outcomes. Results Solicited adverse events were reported by 44% of vaccine recipients and were transient and mild or moderate in intensity. No serious adverse events were related to vaccination. After the first vaccination, geometric mean titers for RSV-A2 neutralization increased from baseline (432 for LD and 512 for HD vaccine) to day 29 (1031 for LD and 1617 for HD). Pre-F–specific antibody geometric mean titers and median frequencies of F-specific interferon γ–secreting T cells also increased substantially from baseline. These immune responses were still maintained above baseline levels 2 years after immunization and could be boosted with a second immunization at 1 year. Conclusions Ad26.RSV.preF (LD and HD) had an acceptable safety profile and elicited sustained humoral and cellular immune responses after a single immunization in older adults.


2009 ◽  
Vol 53 (7) ◽  
pp. 2960-2964 ◽  
Author(s):  
Elizabeth S. Dodds Ashley ◽  
Jay B. Varkey ◽  
Gopal Krishna ◽  
Donna Vickery ◽  
Lei Ma ◽  
...  

ABSTRACT The use of a nasogastric tube is one means of administering antifungal therapy to critically ill patients unable to receive medication via the oral route. This was a phase 1, open-label, single-center, randomized, crossover study of posaconazole administered via nasogastric tube in healthy volunteers. Each subject received two 400-mg single doses of posaconazole, one administered orally and one administered by nasogastric tube, with a 7-day washout period between each dose. Posaconazole was administered 5 to 10 min after subjects received a nutritional supplement. Blood samples for pharmacokinetic analysis were obtained up to 120 h postdose. The analysis of variance estimate of the study population suggests that the posaconazole nasogastric tube administration least-square mean values of observed maximum concentration (C max), area under the plasma concentration-time curve (AUC) to the last measurable concentration, and AUC to time infinity were 81%, 76%, and 77%, respectively, of the corresponding oral administration values. The reason for lower C max and AUC values when posaconazole is administered via the nasogastric tube route is not known. Oral and nasogastric tube administration of a single 400-mg dose of posaconazole suspension was safe and well tolerated in healthy adult subjects. The incidence and nature of treatment-emergent adverse events were similar with both administration routes, and no serious adverse events or clinically significant laboratory test or vital sign abnormalities were reported. Obtaining plasma posaconazole concentrations may be warranted when posaconazole is given to patients via a nasogastric tube to ensure adequate posaconazole exposure. Strategies that have been shown to enhance posaconazole exposure (such as splitting the dose and minimizing the use of proton pump inhibitors) may also be used.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jutamas Saoraya ◽  
Lipda Wongsamita ◽  
Nattachai Srisawat ◽  
Khrongwong Musikatavorn

Abstract Background Aggressive fluid administration is recommended in the resuscitation of septic patients. However, the delivery of a rapid fluid bolus might cause harm by inducing degradation of the endothelial glycocalyx. This research aimed to examine the effects of the limited infusion rate of fluid on glycocalyx shedding as measured by syndecan-1 in patients with sepsis-induced hypoperfusion. Methods A prospective, randomized, controlled, open-label trial was conducted between November 2018 and February 2020 in an urban academic emergency department. Patients with sepsis-induced hypoperfusion, defined as hypotension or hyperlactatemia, were randomized to receive either the standard rate (30 ml/kg/h) or limited rate (10 ml/kg/h) of fluid for the first 30 ml/kg fluid resuscitation. Subsequently, the fluid rate was adjusted according to the physician’s discretion but not more than that of the designated fluid rate for the total of 6 h. The primary outcome was differences in change of syndecan-1 levels at 6 h compared to baseline between standard and limited rate groups. Secondary outcomes included adverse events, organ failure, and 90-day mortality. Results We included 96 patients in the intention-to-treat analysis, with 48 assigned to the standard-rate strategy and 48 to the limited-rate strategy. The median fluid volume in 6 h in the limited-rate group was 39 ml/kg (interquartile range [IQR] 35–52 ml/kg) vs. 53 ml/kg (IQR 46–64 ml/kg) in the standard-rate group (p < 0.001). Patients in the limited-rate group were less likely to received vasopressors (17% vs 42%; p = 0.007) and mechanical ventilation (20% vs 41%; p = 0.049) during the first 6 h. There were no significantly different changes in syndecan-1 levels at 6 h between the two groups (geometric mean ratio [GMR] in the limited-rate group, 0.82; 95% confidence interval [CI], 0.66–1.02; p = 0.07). There were no significant differences in adverse events, organ failure outcomes, or mortality between the two groups. Conclusions In sepsis resuscitation, the limited rate of fluid resuscitation compared to the standard rate did not significantly reduce changes in syndecan-1 at 6 h. Trial registration Thai Clinical Trials Registry number: TCTR20181010001. Registered 8 October 2018, http://www.clinicaltrials.in.th/index.php?tp=regtrials&menu=trialsearch&smenu=fulltext&task=search&task2=view1&id=4064


Author(s):  
Mingxiang Liao ◽  
Krzysztof G. Jeziorski ◽  
Monika Tomaszewska-Kiecana ◽  
István Láng ◽  
Marek Jasiówka ◽  
...  

Abstract Purpose This study aimed at evaluating the effect of rucaparib on the pharmacokinetics of rosuvastatin and oral contraceptives in patients with advanced solid tumors and the safety of rucaparib with and without coadministration of rosuvastatin or oral contraceptives. Methods Patients received single doses of oral rosuvastatin 20 mg (Arm A) or oral contraceptives ethinylestradiol 30 µg + levonorgestrel 150 µg (Arm B) on days 1 and 19 and continuous doses of rucaparib 600 mg BID from day 5 to 23. Serial blood samples were collected with and without rucaparib for pharmacokinetic analysis. Results Thirty-six patients (n = 18 each arm) were enrolled and received at least 1 dose of study drug. In the drug–drug interaction analysis (n = 15 each arm), the geometric mean ratio (GMR) of maximum concentration (Cmax) with and without rucaparib was 1.29 for rosuvastatin, 1.09 for ethinylestradiol, and 1.19 for levonorgestrel. GMR of area under the concentration–time curve from time zero to last quantifiable measurement (AUC0–last) was 1.34 for rosuvastatin, 1.43 for ethinylestradiol, and 1.56 for levonorgestrel. There was no increase in frequency of treatment-emergent adverse events (TEAEs) when rucaparib was given with either of the probe drugs. In both arms, most TEAEs were mild in severity and considered unrelated to study treatment. Conclusion Rucaparib 600 mg BID weakly increased the plasma exposure to rosuvastatin or oral contraceptives. Rucaparib safety profile when coadministered with rosuvastatin or oral contraceptives was consistent with that of rucaparib monotherapy. Dose adjustments of rosuvastatin and oral contraceptives are not necessary when coadministered with rucaparib. ClinicalTrials.gov NCT03954366; Date of registration May 17, 2019.


2013 ◽  
Vol 21 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Johan Berglund ◽  
Peter Vink ◽  
Fernanda Tavares Da Silva ◽  
Pascal Lestrate ◽  
Dominique Boutriau

ABSTRACTWe investigated a protein-based nontypeableHaemophilus influenzae(NTHi) and pneumococcal (HiP) vaccine containing pneumococcal histidine triad D (PhtD), detoxified pneumolysin (dPly), and NTHi protein D (PD) in adults. In a phase I study, 40 healthy 18- to 40-year-old subjects were randomized (2:2:1) to receive two HiP doses administered 60 days apart, with or without AS03 adjuvant (HiP-AS and HiP groups, respectively), or Engerix B (GlaxoSmithKline, Belgium) as a control. Safety, antibodies, and antigen-specific CD4+T-cell immune responses were assessed before and until 480 days after vaccination. No serious adverse events were reported, and no subject withdrew due to an adverse event. Local and systemic symptoms were reported more frequently in the HiP-AS group than in the other two groups. The frequency and intensity of local and systemic symptoms appeared to increase after the second dose of HiP-AS or HiP but not Engerix B. Antibody geometric mean concentrations (GMCs) for PhtD, dPly, and PD increased after each dose of HiP-AS or HiP, with higher GMCs being observed in the HiP-AS group (statistically significant for anti-PD after dose 1 and anti-Ply after dose 2). GMCs remained higher at day 420 than prior to vaccination in both the HiP-AS and HiP groups. Antigen-specific CD4+T cells increased after each dose but were unmeasurable by day 480. Two doses of an investigational PhtD-dPly-PD protein vaccine induced humoral immunity and antigen-specific CD4+T-cell responses after each dose, with generally higher responses when the vaccine was administered with AS03. HiP combined with AS03 appeared to be more reactogenic than the antigens alone. (This study has been registered at ClinicalTrials.gov under registration no. NCT00814489.)


Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 939
Author(s):  
Jiaxin Chen ◽  
Yuangui Cai ◽  
Yicong Chen ◽  
Anthony P. Williams ◽  
Yifang Gao ◽  
...  

Background: Nervous and muscular adverse events (NMAEs) have garnered considerable attention after the vaccination against coronavirus disease (COVID-19). However, the incidences of NMAEs remain unclear. We aimed to calculate the pooled event rate of NMAEs after COVID-19 vaccination. Methods: A systematic review and meta-analysis of clinical trials on the incidences of NMAEs after COVID-19 vaccination was conducted. The PubMed, Medline, Embase, Cochrane Library, and Chinese National Knowledge Infrastructure databases were searched from inception to 2 June 2021. Two independent reviewers selected the study and extracted the data. Categorical variables were analyzed using Pearson’s chi-square test. The pooled odds ratio (OR) with the corresponding 95% confidence intervals (CIs) were estimated and generated with random or fixed effects models. The protocol of the present study was registered on PROSPERO (CRD42021240450). Results: In 15 phase 1/2 trials, NMAEs occurred in 29.2% vs. 21.6% (p < 0.001) vaccinated participants and controls. Headache and myalgia accounted for 98.2% and 97.7%, and their incidences were 16.4% vs. 13.9% (OR = 1.97, 95% CI = 1.28–3.06, p = 0.002) and 16.0% vs. 7.9% (OR = 3.31, 95% CI = 2.05–5.35, p < 0.001) in the vaccine and control groups, respectively. Headache and myalgia were more frequent in the newly licensed vaccines (OR = 1.97, 95% CI = 1.28–3.06, p = 0.02 and OR = 3.31, 95% CI = 2.05–5.35, p < 0.001) and younger adults (OR = 1.40, 95% CI = 1.12–1.75, p = 0.003 and OR = 1.54, 95% CI = 1.20–1.96, p < 0.001). In four open-label trials, the incidences of headache, myalgia, and unsolicited NMAEs were 38.7%, 27.4%, and 1.5%. Following vaccination in phase 3 trials, headache and myalgia were still common with a rate of 29.5% and 19.2%, although the unsolicited NMAEs with incidence rates of ≤ 0.7% were not different from the control group in each study. Conclusions: Following the vaccination, NMAEs are common of which headache and myalgia comprised a considerable measure, although life-threatening unsolicited events are rare. NMAEs should be continuously monitored during the ongoing global COVID-19 vaccination program.


Author(s):  
Lauren E Walker ◽  
Richard FitzGerald ◽  
Geoffrey Saunders ◽  
Rebecca Lyon ◽  
Michael Fisher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document