scholarly journals Identification of cardiac afterload dynamics from data

2021 ◽  
Author(s):  
Henry Pigot ◽  
Jonas Hansson ◽  
Audrius Paskevicius ◽  
Qiuming Liao ◽  
Trygve Sjöberg ◽  
...  

AbstractThe prospect of ex vivo functional evaluation of donor hearts is considered. Particularly, the dynamics of a synthetic cardiac afterload model are compared to those of normal physiology. A method for identification of continuous-time transfer functions from sampled data is developed and verified against results from the literature. The method relies on exact gradients and Hessians obtained through automatic differentiation. This also enables straightforward sensitivity analyses. Such analyses reveal that the 4-element Windkessel model is not practically identifiable from representative data while the 3-element model underfits the data. Pressure–volume (PV) loops are therefore suggested as an alternative for comparing afterload dynamics.

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 173-180
Author(s):  
Giorgia Di Gangi ◽  
Giorgio Monti ◽  
Giuseppe Quaranta ◽  
Marco Vailati ◽  
Cristoforo Demartino

The seismic performance of timber light-frame shear walls is investigated in this paper with a focus on energy dissipation and ductility ensured by sheathing-to-framing connections. An original parametric finite element model has been developed in order to perform sensitivity analyses. The model considers the design variables affecting the racking load-carrying capacity of the wall. These variables include aspect ratio (height-to-width ratio), fastener spacing, number of vertical studs and framing elements cross-section size. A failure criterion has been defined based on the observation of both the global behaviour of the wall and local behaviour of fasteners in order to identify the ultimate displacement of the wall. The equivalent viscous damping has been numerically assessed by estimating the damping factor which is in use in the capacity spectrum method. Finally, an in-depth analysis of the results obtained from the sensitivity analyses led to the development of a simplified analytical procedure which is able to predict the capacity curve of a timber light-frame shear wall.


2017 ◽  
Vol 36 (2) ◽  
pp. 160-176 ◽  
Author(s):  
Seyed-Ali Mosayebi ◽  
Morteza Esmaeili ◽  
Jabbar-Ali Zakeri

Review of technical literature regarding to train-induced vibrations shows that the effects of unsupported railway sleepers on this issue have been less investigated. So, the present study was devoted to numerical investigations of the mentioned issue. In this regard, first the problem of longitudinal train–track dynamic interaction was simulated in two dimensions by using the finite element method and the developed model was validated through comparison of the results with those obtained by previous researchers. In the next stage, a series of sensitivity analyses were accomplished to account for the effects of value of gap beneath the unsupported sleeper(s) and the track support stiffness on increasing the sleeper displacement and track support force. Moreover, the raised sleeper support force was introduced as applied load to a two-dimensional plane strain finite element model of track in lateral section and consequently the train-induced vibrations were assessed. As a result, a series of regression equations were established between the peak particle velocity in the surrounding environment of railway track and the sleeper support stiffness for tracks without unsupported sleepers and with one and two unsupported sleepers.


2011 ◽  
Vol 30 (4) ◽  
pp. S39 ◽  
Author(s):  
I.L. Medeiros ◽  
P.M. Pego-Fernandes ◽  
A.W. Mariani ◽  
F.G. Fernandes ◽  
F.V. Unterpertinger ◽  
...  

2021 ◽  
Author(s):  
Grégory Alexandre Toguyeni ◽  
Jens Fernandez-Vega ◽  
Richard Jones ◽  
Martin Gallegillo ◽  
Joachim Banse

Abstract A solution to prevent liner wrinkling in Mechanically Lined Pipes (MLP) with a standard 3.0mm thick liner during reeling, without the use of pressurisation, has been developed in the form of the GluBi® lined pipe. The liner being adhesively bonded to the outer pipe, its integrity is maintained despite the global plastic strain applied by the installation method. This new linepipe product has been qualified for offshore use through testing accompanied by a detailed Finite Element Analysis programme to fully capture the pipe and adhesive behaviours under and range of temperatures and loading conditions. The objective of this analysis program was to investigate the reelability of the GluBi® pipe. The instalability was defined as the capability of the pipe to tolerate cyclic plastic deformation representative of a typical pipeline installation by reeling without the formation of wrinkling of the CRA liner, and to maintain the integrity of the adhesive layer, particularly near the weld overlay at the pipe ends. Important areas of the GluBi® pipe design are the pipe extremities, particularly the transition between the liner and the weld overlay length. A detailed Finite Element model of the pipe was created. It captured all stages of the pipe manufacturing: pipe lining, hydrostatic expansion, adhesive curing, overlay weld deposition and reeling simulation. The pipe modelled was 312.1mm OD × 19.7mm WT SMLS 450 with a nominal 3.0mm thick Alloy 625 liner. An important validation work was performed to obtain a precise material response of the adhesive layer between liner and outer pipe. The adhesive mechanical properties were thus assessed in shearing and peeling over a range of temperatures covering all possible manufacturing and installation conditions. The model's elements and adhesive property modelling were validated against physical test results. Sensitivity analyses were done on the adhesive curing temperature, the geometry of the adhesive transition between the liner and the overlay weld at the pipe ends and on the liner thickness. The model was subjected to reeling simulation corresponding to Subsea 7's reel-lay vessels. The liner's integrity post reeling was assessed according to a range of acceptance criteria. These studies made it possible to establish parameter ranges for the safe installation of the linepipe.


1999 ◽  
Author(s):  
Michael Allen ◽  
Nickolas Vlahopoulos

Abstract In this paper an algorithm is developed for combining finite element analysis and boundary element techniques in order to compute the noise radiated from a panel subjected to boundary layer excitation. The excitation is presented in terms of the auto and cross power spectral densities of the fluctuating wall pressure. The structural finite element model for the panel is divided into a number of sub-panels. A uniform fluctuating pressure is applied as excitation on each sub-panel separately. The corresponding vibration is computed, and is utilized as excitation for an acoustic boundary element analysis. The acoustic response is computed at any data recovery point of interest. The relationships between the acoustic response and the pressure excitation applied at each particular sub-panel constitute a set of transfer functions. They are combined with the spectral densities of the excitation for computing the noise generated from the vibration of the panel subjected to the boundary layer excitation. The development presented in this paper has the potential of computing wind noise in automotive applications, or boundary layer noise in aircraft applications.


2008 ◽  
Vol 25 (14) ◽  
pp. 145020 ◽  
Author(s):  
Pierre Teyssandier ◽  
Christophe Le Poncin-Lafitte

Author(s):  
William Hilth ◽  
David Ryckelynck ◽  
Claire Menet

The development and generalization of Digital Volume Correlation (DVC) on X-ray computed tomography data highlight the issue of long term storage. The present paper proposes a new model-free method for pruning the DVC data. The size of the remaining sampled data can be user-defined, depending on the needs concerning storage space. The data pruning procedure is deeply linked to hyper-reduction techniques. The DVC data of a resin-bonded sand tested in uniaxial compression is used as an illustrating example. The relevance of the pruned data is tested afterwards for model calibration. A new Finite Element Model Updating (FEMU) technique coupled with an hybrid hyper-reduction method is used to successfully calibrate a constitutive model of the resin bonded sand with the pruned data only.


Sign in / Sign up

Export Citation Format

Share Document