scholarly journals Sex dependent glial-specific changes in the chromatin accessibility landscape in late-onset Alzheimer′s disease brains

2021 ◽  
Author(s):  
Julio A Barrera ◽  
Lingyun Song ◽  
Alexias Safi ◽  
Young Jun Yun ◽  
Melanie E Garrett ◽  
...  

In the post-GWAS era, there is an unmet need to decode the underpinning genetic etiologies of late-onset Alzheimer′s disease (LOAD) and translate the associations to causation. Toward that goal, we conducted ATAC-seq profiling using neuronal nuclear protein (NeuN) sorted-nuclei from 40 frozen brain tissues to determine LOAD-specific changes in chromatin accessibility landscape in a cell-type specific manner. We identified 211 LOAD-specific differential chromatin accessibility sites in neuronal-nuclei, four of which overlapped with LOAD-GWAS regions (±100kb of SNP). While the non-neuronal nuclei did not show LOAD-specific differences, stratification by sex identified 842 LOAD-specific chromatin accessibility sites in females. Seven of these sex-dependent sites in the non-neuronal samples overlapped LOAD-GWAS regions including APOE. LOAD loci were functionally validated using single-nuclei RNA-seq datasets. In conclusion, using brain sorted-nuclei enabled the identification of sex-dependent cell type-specific LOAD alterations in chromatin structure. These findings enhance the interpretation of LOAD-GWAS discoveries, provide potential pathomechanisms, and suggest novel LOAD-loci. Furthermore, our results convey mechanistic insights into sex differences in LOAD risk and clinicopathology.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Julio Barrera ◽  
Lingyun Song ◽  
Julia E. Gamache ◽  
Melanie E. Garrett ◽  
Alexias Safi ◽  
...  

Abstract Background In the post-GWAS era, there is an unmet need to decode the underpinning genetic etiologies of late-onset Alzheimer’s disease (LOAD) and translate the associations to causation. Methods We conducted ATAC-seq profiling using NeuN sorted-nuclei from 40 frozen brain tissues to determine LOAD-specific changes in chromatin accessibility landscape in a cell-type specific manner. Results We identified 211 LOAD-specific differential chromatin accessibility sites in neuronal-nuclei, four of which overlapped with LOAD-GWAS regions (±100 kb of SNP). While the non-neuronal nuclei did not show LOAD-specific differences, stratification by sex identified 842 LOAD-specific chromatin accessibility sites in females. Seven of these sex-dependent sites in the non-neuronal samples overlapped LOAD-GWAS regions including APOE. LOAD loci were functionally validated using single-nuclei RNA-seq datasets. Conclusions Using brain sorted-nuclei enabled the identification of sex-dependent cell type-specific LOAD alterations in chromatin structure. These findings enhance the interpretation of LOAD-GWAS discoveries, provide potential pathomechanisms, and suggest novel LOAD-loci. Graphical Abstract


2021 ◽  
Vol 15 ◽  
Author(s):  
Jeffrey Gu ◽  
Julio Barrera ◽  
Young Yun ◽  
Susan K. Murphy ◽  
Thomas G. Beach ◽  
...  

Parkinson’s disease (PD) and dementia with Lewy body (DLB) are the most common synucleinopathies. SNCA gene is a major genetic risk factor for these diseases group, and dysregulation of its expression has been implicated in the genetic etiologies of several synucleinopathies. DNA methylation at CpG island (CGI) within SNCA intron 1 has been suggested as a regulatory mechanism of SNCA expression, and changes in methylation levels at this region were associated with PD and DLB. However, the role of DNA methylation in the regulation of SNCA expression in a cell-type specific manner and its contribution to the pathogenesis of PD and DLB remain poorly understood, and the data are conflicting. Here, we employed a bisulfite pyrosequencing technique to profile the DNA methylation across SNCA intron 1 CGI in PD and DLB compared to age- and sex-matched normal control subjects. We analyzed homogenates of bulk post-mortem frozen frontal cortex samples and a subset of neuronal and glia nuclei sorted by the fluorescence-activated nuclei sorting (FANS) method. Bulk brain tissues showed no significant difference in the overall DNA methylation across SNCA intron 1 CGI region between the neuropathological groups. Sorted neuronal nuclei from PD frontal cortex showed significant lower levels of DNA methylation at this region compared to normal controls, but no differences between DLB and control, while sorted glia nuclei exhibited trends of decreased overall DNA methylation in DLB only. In conclusion, our data suggested disease-dependent cell-type specific differential DNA methylation within SNCA intron 1 CGI. These changes may affect SNCA dysregulation that presumably mediates disease-specific risk. Our results can be translated into the development of the SNCA intron 1 CGI region as an attractive therapeutics target for gene therapy in patients who suffer from synucleinopathies due to SNCA dysregulation.


2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Ornit Chiba‐Falek ◽  
Julio Barrera ◽  
Lingyun Song ◽  
Alexias Safi ◽  
Young Jun Yu ◽  
...  

Author(s):  
Maria Brbić ◽  
Marinka Zitnik ◽  
Sheng Wang ◽  
Angela O. Pisco ◽  
Russ B. Altman ◽  
...  

Although tremendous effort has been put into cell type annotation and classification, identification of previously uncharacterized cell types in heterogeneous single-cell RNA-seq data remains a challenge. Here we present MARS, a meta-learning approach for identifying and annotating known as well as novel cell types. MARS overcomes the heterogeneity of cell types by transferring latent cell representations across multiple datasets. MARS uses deep learning to learn a cell embedding function as well as a set of landmarks in the cell embedding space. The method annotates cells by probabilistically defining a cell type based on nearest landmarks in the embedding space. MARS has a unique ability to discover cell types that have never been seen before and annotate experiments that are yet unannotated. We apply MARS to a large aging cell atlas of 23 tissues covering the life span of a mouse. MARS accurately identifies cell types, even when it has never seen them before. Further, the method automatically generates interpretable names for novel cell types. Remarkably, MARS estimates meaningful cell-type-specific signatures of aging and visualizes them as trajectories reflecting temporal relationships of cells in a tissue.


2021 ◽  
Author(s):  
Veronika Petrova ◽  
Renhua Song ◽  
Karl J.V. Nordström ◽  
Jörn Walter ◽  
Justin J.-L. Wong ◽  
...  

SummaryDynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including cancer. Despite consistent reports demonstrating intrinsic sequence features that predispose introns to become retained, conflicting findings about cell type-specific IR regulation demand a systematic analysis in a controlled experimental setting. We integrated matched transcriptomics and epigenetics data (including DNA methylation, nucleosome occupancy, histone modifications) from primary human myeloid and lymphoid cells. Using machine learning we trained two complementary models to determine the role of epigenetic factors in the regulation of IR. We show that increased chromatin accessibility contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. With mounting reports linking pathogenic alterations to RNA processing, our findings may have profound implications for the design of therapeutic approaches targeting aberrant splicing.


2021 ◽  
Vol 4 (6) ◽  
pp. e202001004
Author(s):  
Almut Lütge ◽  
Joanna Zyprych-Walczak ◽  
Urszula Brykczynska Kunzmann ◽  
Helena L Crowell ◽  
Daniela Calini ◽  
...  

A key challenge in single-cell RNA-sequencing (scRNA-seq) data analysis is batch effects that can obscure the biological signal of interest. Although there are various tools and methods to correct for batch effects, their performance can vary. Therefore, it is important to understand how batch effects manifest to adjust for them. Here, we systematically explore batch effects across various scRNA-seq datasets according to magnitude, cell type specificity, and complexity. We developed a cell-specific mixing score (cms) that quantifies mixing of cells from multiple batches. By considering distance distributions, the score is able to detect local batch bias as well as differentiate between unbalanced batches and systematic differences between cells of the same cell type. We compare metrics in scRNA-seq data using real and synthetic datasets and whereas these metrics target the same question and are used interchangeably, we find differences in scalability, sensitivity, and ability to handle differentially abundant cell types. We find that cell-specific metrics outperform cell type–specific and global metrics and recommend them for both method benchmarks and batch exploration.


2017 ◽  
Vol 55 (05) ◽  
pp. e28-e56
Author(s):  
S Macheiner ◽  
R Gerner ◽  
A Pfister ◽  
A Moschen ◽  
H Tilg

2020 ◽  
Vol 528 (13) ◽  
pp. 2218-2238 ◽  
Author(s):  
Attilio Iemolo ◽  
Patricia Montilla‐Perez ◽  
I‐Chi Lai ◽  
Yinuo Meng ◽  
Syreeta Nolan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4959
Author(s):  
Lilas Courtot ◽  
Elodie Bournique ◽  
Chrystelle Maric ◽  
Laure Guitton-Sert ◽  
Miguel Madrid-Mencía ◽  
...  

DNA replication timing (RT), reflecting the temporal order of origin activation, is known as a robust and conserved cell-type specific process. Upon low replication stress, the slowing of replication forks induces well-documented RT delays associated to genetic instability, but it can also generate RT advances that are still uncharacterized. In order to characterize these advanced initiation events, we monitored the whole genome RT from six independent human cell lines treated with low doses of aphidicolin. We report that RT advances are cell-type-specific and involve large heterochromatin domains. Importantly, we found that some major late to early RT advances can be inherited by the unstressed next-cellular generation, which is a unique process that correlates with enhanced chromatin accessibility, as well as modified replication origin landscape and gene expression in daughter cells. Collectively, this work highlights how low replication stress may impact cellular identity by RT advances events at a subset of chromosomal domains.


Sign in / Sign up

Export Citation Format

Share Document