scholarly journals PFKFB3 DEPLETION ACTIVATES β–CELL REPLICATION BY CELL COMPETITIVE CULLING OF COMPROMISED β–CELLS UNDER STRESS

2021 ◽  
Author(s):  
Jie Min ◽  
Feyiang Ma ◽  
Matteo Pellegrini ◽  
Oppel Greeff ◽  
Salvador Moncada ◽  
...  

Highly conserved hypoxia–inducible factor 1 alpha (HIF1α) and its target 6–phosphofructo–2–kinase/fructose–2,6–biphosphatase 3 (PFKFB3) play a critical role in the survival of damaged β–cells in type 2 diabetes (T2D) while rendering β–cells non–responsive to glucose stimulation by mitochondrial suppression. HIF1α –PFKFB3 is activated in 30–50% of all β–cells in diabetic islets, leaving an open question of whether targeting this pathway may adjust β–cell mass and function to the specific metabolic demands during diabetogenic stress. Our previous studies of β–cells under amyloidogenic stress by human islet amyloid polypeptide (hIAPP) revealed that PFKFB3 is a metabolic execution arm of the HIF1α pathway with potent implications on Ca2+ homeostasis, metabolome, and mitochondrial form and function. To discriminate the role of PFKFB3 from HIF1α in vivo, we generated mice with conditional β–cell specific disruption of the Pfkfb3 gene on a heterozygous hIAPP background and a high–fat diet (HFD) [PFKFB3βKO + diabetogenic stress (DS)]. PFKFB3 disruption in β–cells under diabetogenic stress led to selective purging of hIAPP–damaged β–cells and the disappearance of bihormonal insulin– and glucagon–positive cells, thus compromised β–cells. At the same time, PFKFB3 disruption led to a three–fold increase in β–cell replication resembling control levels as measured with minichromosome maintenance 2 protein (MCM2). PFKFB3 disruption depleted bihormonal cells while increased β–cell replication that was reflected in the increased β–/α–cell ratio and maintained β–cell mass. Analysis of metabolic performance indicated comparable glucose intolerance and reduced plasma insulin levels in PFKFB3βKO DS relative to PFKFB3WT DS mice. In the PFKFB3βKO DS group, plasma glucagon levels were reduced compared to PFKFB3WT DS mice and were in line with increased insulin sensitivity. Glucose intolerance in PFKFB3βKO DS mice could be explained by the compensatory expression of HIF1α after disruption of PFKFB3. Our data strongly suggest that the replication and functional recovery of β–cells under diabetogenic stress depend on selective purification of HIF1α and PFKFB3–positive β–cells. Thus, HIF1α–PFKFB3–dependent activation of cell competition and purging of compromised β–cells may yield functional competent β–cell mass in diabetes.

2009 ◽  
Vol 297 (2) ◽  
pp. E323-E330 ◽  
Author(s):  
Erica Manesso ◽  
Gianna M. Toffolo ◽  
Yoshifumi Saisho ◽  
Alexandra E. Butler ◽  
Aleksey V. Matveyenko ◽  
...  

Type 2 diabetes is characterized by hyperglycemia, a deficit in β-cells, increased β-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify β-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether β-cell formation is derived exclusively from β-cell replication, or whether other sources of β-cells (OSB) are present, and 2) to what extent, if any, there is attempted β-cell regeneration in the HIP rat and if this is through β-cell replication or OSB. We conclude that formation and maintenance of adult β-cells depends largely (∼80%) on formation of β-cells independent from β-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted β-cell regeneration that substantially slows loss of β-cell mass.


2020 ◽  
Vol 295 (37) ◽  
pp. 12975-12992 ◽  
Author(s):  
Xinlei Yao ◽  
Kun Li ◽  
Chen Liang ◽  
Zilong Zhou ◽  
Jiao Wang ◽  
...  

Pancreas/duodenum homeobox protein 1 (PDX1) is an important transcription factor that regulates islet β-cell proliferation, differentiation, and function. Reduced expression of PDX1 is thought to contribute to β-cell loss and dysfunction in diabetes. Thus, promoting PDX1 expression can be an effective strategy to preserve β-cell mass and function. Previously, we established a PDX1 promoter-dependent luciferase system to screen agents that can promote PDX1 expression. Natural compound tectorigenin (TG) was identified as a promising candidate that could enhance the activity of the promoter for the PDX1 gene. In this study, we first demonstrated that TG could promote the expression of PDX1 in β-cells via activating extracellular signal-related kinase (ERK), as indicated by increased phosphorylation of ERK; this effect was observed under either normal or glucotoxic/lipotoxic conditions. We then found that TG could suppress induced apoptosis and improved the viability of β-cells under glucotoxicity and lipotoxicity by activation of ERK and reduction of reactive oxygen species and endoplasmic reticulum (ER) stress. These effects held true in vivo as well: prophylactic or therapeutic use of TG could obviously inhibit ER stress and decrease islet β-cell apoptosis in the pancreas of mice given a high-fat/high-sucrose diet (HFHSD), thus dramatically maintaining or restoring β-cell mass and islet size, respectively. Accordingly, both prophylactic and therapeutic use of TG improved HFHSD-impaired glucose metabolism in mice, as evidenced by ameliorating hyperglycemia and glucose intolerance. Taken together, TG, as an agent promoting PDX1 expression exhibits strong protective effects on islet β-cells both in vitro and in vivo.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dror Sever ◽  
Anat Hershko-Moshe ◽  
Rohit Srivastava ◽  
Roy Eldor ◽  
Daniel Hibsher ◽  
...  

AbstractNF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2251-2260 ◽  
Author(s):  
Jennifer L. Beith ◽  
Emilyn U. Alejandro ◽  
James D. Johnson

A relative decrease in β-cell mass is key in the pathogenesis of type 1 diabetes, type 2 diabetes, and in the failure of transplanted islet grafts. It is now clear that β-cell duplication plays a dominant role in the regulation of adult β-cell mass. Therefore, knowledge of the endogenous regulators of β-cell replication is critical for understanding the physiological control of β-cell mass and for harnessing this process therapeutically. We have shown that concentrations of insulin known to exist in vivo act directly on β-cells to promote survival. Whether insulin stimulates adult β-cell proliferation remains unclear. We tested this hypothesis using dispersed primary mouse islet cells double labeled with 5-bromo-2-deoxyuridine and insulin antisera. Treating cells with 200-pm insulin significantly increased proliferation from a baseline rate of 0.15% per day. Elevating glucose from 5–15 mm did not significantly increase β-cell replication. β-Cell proliferation was inhibited by somatostatin as well as inhibitors of insulin signaling. Interestingly, inhibiting Raf-1 kinase blocked proliferation stimulated by low, but not high (superphysiological), insulin doses. Insulin-stimulated mouse insulinoma cell proliferation was dependent on both phosphatidylinositol 3-kinase/Akt and Raf-1/MAPK kinase pathways. Overexpression of Raf-1 was sufficient to increase proliferation in the absence of insulin, whereas a dominant-negative Raf-1 reduced proliferation in the presence of 200-pm insulin. Together, these results demonstrate for the first time that insulin, at levels that have been measured in vivo, can directly stimulate β-cell proliferation and that Raf-1 kinase is involved in this process. These findings have significant implications for the understanding of the regulation of β-cell mass in both the hyperinsulinemic and insulin-deficient states that occur in the various forms of diabetes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Idil I. Aigha ◽  
Essam M. Abdelalim

Abstract Understanding the biology underlying the mechanisms and pathways regulating pancreatic β cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin-producing β cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive to β cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1−) results in an undesirable generation of non-functional polyhormonal β cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a means to increase β cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1892
Author(s):  
Emily S. Krueger ◽  
Joseph L. Beales ◽  
Kacie B. Russon ◽  
Weston S. Elison ◽  
Jordan R. Davis ◽  
...  

Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic β-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional β-cell mass. We hypothesized that TMAO may damage functional β-cell mass by inhibiting β-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 β-cells and primary rat islets with physiological TMAO concentrations and compared functional β-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded β-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in β-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects β-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions.


Theranostics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 398-410 ◽  
Author(s):  
Filippo C. Michelotti ◽  
Gregory Bowden ◽  
Astrid Küppers ◽  
Lieke Joosten ◽  
Jonas Maczewsky ◽  
...  
Keyword(s):  
Β Cell ◽  

2011 ◽  
Vol 210 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Risheng Ye ◽  
Min Ni ◽  
Miao Wang ◽  
Shengzhan Luo ◽  
Genyuan Zhu ◽  
...  

The inositol 1,4,5-trisphosphate receptors (IP3Rs) as ligand-gated Ca2+ channels are key modulators of cellular processes. Despite advances in understanding their critical role in regulating neuronal function and cell death, how this family of proteins impact cell metabolism is just emerging. Unexpectedly, a transgenic mouse line (D2D) exhibited progressive glucose intolerance as a result of transgene insertion. Inverse PCR was used to identify the gene disruption in the D2D mice. This led to the discovery that Itpr1 is among the ten loci disrupted in chromosome 6. Itpr1 encodes for IP3R1, the most abundant IP3R isoform in mouse brain and also highly expressed in pancreatic β-cells. To study IP3R1 function in glucose metabolism, we used the Itpr1 heterozygous mutant mice, opt/+. Glucose homeostasis in male mice cohorts was examined by multiple approaches of metabolic phenotyping. Under regular diet, the opt/+ mice developed glucose intolerance but no insulin resistance. Decrease in second-phase glucose-stimulated blood insulin level was observed in opt/+ mice, accompanied by reduced β-cell mass and insulin content. Strikingly, when fed with high-fat diet, the opt/+ mice were more susceptible to the development of hyperglycemia, glucose intolerance, and insulin resistance. Collectively, our studies identify the gene Itpr1 being interrupted in the D2D mice and uncover a novel role of IP3R1 in regulation of in vivo glucose homeostasis and development of diet-induced diabetes.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4589-4600 ◽  
Author(s):  
Jennifer L. Plank ◽  
Audrey Y. Frist ◽  
Alison W. LeGrone ◽  
Mark A. Magnuson ◽  
Patricia A. Labosky

A complete molecular understanding of β-cell mass expansion will be useful for the improvement of therapies to treat diabetic patients. During normal periods of metabolic challenges, such as pregnancy, β-cells proliferate, or self-renew, to meet the new physiological demands. The transcription factor Forkhead box D3 (Foxd3) is required for maintenance and self-renewal of several diverse progenitor cell lineages, and Foxd3 is expressed in the pancreatic primordium beginning at 10.5 d postcoitum, becoming localized predominantly to β-cells after birth. Here, we show that mice carrying a pancreas-specific deletion of Foxd3 have impaired glucose tolerance, decreased β-cell mass, decreased β-cell proliferation, and decreased β-cell size during pregnancy. In addition, several genes known to regulate proliferation, Foxm1, Skp2, Ezh2, Akt2, and Cdkn1a, are misregulated in islets isolated from these Foxd3 mutant mice. Together, these data place Foxd3 upstream of several pathways critical for β-cell mass expansion in vivo.


Endocrinology ◽  
2016 ◽  
Vol 157 (3) ◽  
pp. 1055-1070 ◽  
Author(s):  
Ting Zhang ◽  
Dae Hyun Kim ◽  
Xiangwei Xiao ◽  
Sojin Lee ◽  
Zhenwei Gong ◽  
...  

Abstract β-Cell compensation is an essential mechanism by which β-cells increase insulin secretion for overcoming insulin resistance to maintain euglycemia in obesity. Failure of β-cells to compensate for insulin resistance contributes to insulin insufficiency and overt diabetes. To understand the mechanism of β-cell compensation, we characterized the role of forkhead box O1 (FoxO1) in β-cell compensation in mice under physiological and pathological conditions. FoxO1 is a key transcription factor that serves as a nutrient sensor for integrating insulin signaling to cell metabolism, growth, and proliferation. We showed that FoxO1 improved β-cell compensation via 3 distinct mechanisms by increasing β-cell mass, enhancing β-cell glucose sensing, and augmenting β-cell antioxidative function. These effects accounted for increased glucose-stimulated insulin secretion and enhanced glucose tolerance in β-cell-specific FoxO1-transgenic mice. When fed a high-fat diet, β-cell-specific FoxO1-transgenic mice were protected from developing fat-induced glucose disorder. This effect was attributable to increased β-cell mass and function. Furthermore, we showed that FoxO1 activity was up-regulated in islets, correlating with the induction of physiological β-cell compensation in high-fat-induced obese C57BL/6J mice. These data characterize FoxO1 as a pivotal factor for orchestrating physiological adaptation of β-cell mass and function to overnutrition and obesity.


Sign in / Sign up

Export Citation Format

Share Document