scholarly journals Predation by protists influences the temperature response of microbial communities

2021 ◽  
Author(s):  
Jennifer D Rocca ◽  
Andrea Yammine ◽  
Marie Simonin ◽  
Jean Gibert

Temperature strongly influences microbial community structure and function, which in turn contributes to the global carbon cycle that can fuel further warming. Recent studies suggest that biotic interactions amongst microbes may play an important role in determining the temperature responses of these communities. However, how microbial predation regulates these communities under future climates is still poorly understood. Here we assess whether predation by one of the most important bacterial consumers globally, protists, influences the temperature response of a freshwater microbial community structure and function. To do so, we exposed these microbial communities to two cosmopolitan species of protists at two different temperatures, in a month-long microcosm experiment. While microbial biomass and respiration increased with temperature due to shifts in microbial community structure, these responses changed over time and in the presence of protist predators. Protists influenced microbial biomass and function through effects on community structure, and predation actually reduced microbial respiration rate at elevated temperature. Indicator species and threshold indicator taxa analyses showed that these predation effects were mostly determined by phylum-specific bacterial responses to protist density and cell size. Our study supports previous findings that temperature is an important driver of microbial communities, but also demonstrates that predation can mediate these responses to warming, with important consequences for the global carbon cycle and future warming.

2021 ◽  
Vol 12 ◽  
Author(s):  
Denise M. Akob ◽  
Adam C. Mumford ◽  
Andrea Fraser ◽  
Cassandra R. Harris ◽  
William H. Orem ◽  
...  

The widespread application of directional drilling and hydraulic fracturing technologies expanded oil and gas (OG) development to previously inaccessible resources. A single OG well can generate millions of liters of wastewater, which is a mixture of brine produced from the fractured formations and injected hydraulic fracturing fluids (HFFs). With thousands of wells completed each year, safe management of OG wastewaters has become a major challenge to the industry and regulators. OG wastewaters are commonly disposed of by underground injection, and previous research showed that surface activities at an Underground Injection Control (UIC) facility in West Virginia affected stream biogeochemistry and sediment microbial communities immediately downstream from the facility. Because microbially driven processes can control the fate and transport of organic and inorganic components of OG wastewater, we designed a series of aerobic microcosm experiments to assess the influence of high total dissolved solids (TDS) and two common HFF additives—the biocide 2,2-dibromo-3-nitrilopropionamide (DBNPA) and ethylene glycol (an anti-scaling additive)—on microbial community structure and function. Microcosms were constructed with sediment collected upstream (background) or downstream (impacted) from the UIC facility in West Virginia. Exposure to elevated TDS resulted in a significant decrease in aerobic respiration, and microbial community analysis following incubation indicated that elevated TDS could be linked to the majority of change in community structure. Over the course of the incubation, the sediment layer in the microcosms became anoxic, and addition of DBNPA was observed to inhibit iron reduction. In general, disruptions to microbial community structure and function were more pronounced in upstream and background sediment microcosms than in impacted sediment microcosms. These results suggest that the microbial community in impacted sediments had adapted following exposure to OG wastewater releases from the site. Our findings demonstrate the potential for releases from an OG wastewater disposal facility to alter microbial communities and biogeochemical processes. We anticipate that these studies will aid in the development of useful models for the potential impact of UIC disposal facilities on adjoining surface water and shallow groundwater.


2006 ◽  
Vol 36 (10) ◽  
pp. 2595-2604 ◽  
Author(s):  
Susan J Grayston ◽  
Heinz Rennenberg

This study aimed to characterize the effects of forest management on soil microbial community structure and function in a European beech (Fagus sylvatica L.) forest. We used community level physiological profiles, phospholipid fatty acid (PLFA) profiles, microbial biomass, culturing, and respiration approaches to quantify soil microbial community structure and activity at two sites in a naturally regenerated beech forest subjected to intermediate and heavy thinning and control (unthinned) in southern Germany. PLFA showed that the northeast-facing (NE) site contained significantly greater bacterial and fungal biomass than the southwest-facing (SW) site. Heavy thinning (tree basal area reduction from 27 to 10 m2·ha–1) significantly reduced microbial biomass in the NE site, measured using fumigation–extraction, but both bacterial and fungal biomass increased with thinning on the SW site. Soil microbial activity was significantly higher in the control plots of the NE compared with the SW site and was significantly reduced by heavy thinning, again only on the NE site. Our findings are consistent with our initial hypotheses that contrasting N uptake by beech on these two sites after thinning may relate to differences in the soil microbial biomass, population structure and function on the two sites.


Sign in / Sign up

Export Citation Format

Share Document