scholarly journals Automated Analysis of Bacterial Flow Cytometry Data with FlowGateNIST

2021 ◽  
Author(s):  
David Ross

AbstractFlow cytometry is commonly used to evaluate the performance of engineered bacteria. With increasing use of high-throughput experimental methods, there is a need for automated analysis methods for flow cytometry data. Here, we describe FlowGateNIST, a Python package for automated analysis of bacterial flow cytometry data. The main components of FlowGateNIST perform automatic gating to differentiate between cells and background events and then between singlet and multiplet events. FlowGateNIST also includes a method for automatic calibration of fluorescence signals using fluorescence calibration beads. FlowGateNIST is open source and freely available with tutorials and example data to facilitate adoption by users with minimal programming experience.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0250753 ◽  
Author(s):  
David Ross

Flow cytometry is commonly used to evaluate the performance of engineered bacteria. With increasing use of high-throughput experimental methods, there is a need for automated analysis methods for flow cytometry data. Here, we describe FlowGateNIST, a Python package for automated analysis of bacterial flow cytometry data. The main components of FlowGateNIST perform automatic gating to differentiate between cells and background events and then between singlet and multiplet events. FlowGateNIST also includes a method for automatic calibration of fluorescence signals using fluorescence calibration beads. FlowGateNIST is open source and freely available with tutorials and example data to facilitate adoption by users with minimal programming experience.


Methods ◽  
2018 ◽  
Vol 134-135 ◽  
pp. 164-176 ◽  
Author(s):  
Albina Rahim ◽  
Justin Meskas ◽  
Sibyl Drissler ◽  
Alice Yue ◽  
Anna Lorenc ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-2
Author(s):  
Raphael Gottardo ◽  
Ryan R. Brinkman ◽  
George Luta ◽  
Matt P. Wand

2012 ◽  
Vol 7 (8) ◽  
pp. 679-693 ◽  
Author(s):  
J Paul Robinson ◽  
Bartek Rajwa ◽  
Valery Patsekin ◽  
Vincent Jo Davisson

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2864-2864
Author(s):  
Jens Rueter ◽  
Vivek Philip ◽  
Krishna Karuturi ◽  
Zaher Oueida ◽  
Margaret Chavaree ◽  
...  

Abstract Introduction Recent developments of novel immunotherapeutic drugs have shown promising results for patients with hematologic malignancies, however, an unmet need for accurate and specific biomarkers persists. To address this need, we developed a novel integrative analysis procedure for the automated analysis of multidimensional flow cytometry data obtained from the peripheral blood of patients with chronic lymphocytic leukemia (CLL). State of the art flow cytometry analysis is accomplished by manual sequential segmentation, or gating, of cell populations based on similarities in fluorescence and light scatter characteristics through visualization of the data in one- or two-dimensional plots. This approach has a number of limitations, including the subjective nature of the gating and the inability to fully utilize the high-dimensional data. Recent efforts have produced sophisticated computational methods that overcome many of these limitations; however, these newer computational methods have not been rigorously tested in a clinical context and have focused on the rigorous and automated analysis of samples from individual patients, with substantially less effort towards the analysis of patient populations. The ultimate goal of our analysis is to develop computational approaches that will enable an identification of subsets of patients with distinct immunological markers. Methods We developed a novel analysis framework that facilitates automated identification of both common cell types and patient population subgroups, based on post-processing of individual sample analysis with the FLOCK program. FLOCK identifies clusters of putatively similar cells in an individual sample by multidimensional clustering of the fluorescence marker and light-scattering measurements. We developed a rigorous hierarchical clustering approach to identify common “cell signatures” across multiple patients. The cell signatures were then mapped back onto the individual patient samples and used in a second clustering that identified patient subgroups based on similar abundances of specific cell types. Results We used our analytic framework to analyze multidimensional flow cytometry data (26 cell surface markers in 4 different antibody cocktails) from peripheral blood specimens of a heterogeneous group of 55 CLL patients and 13 healthy controls. Our analysis revealed distinct differences between controls and CLL patients. Analyzing the non-malignant peripheral blood cell types, we were furthermore able to differentiate between distinct clinical subpopulations of patients (e.g. identify treatment-naïve patients from those that had previously undergone chemotherapy). Conclusion/Discussion Using a novel integrative analysis procedure to analyze complex flow cytometry data of the peripheral blood from CLL patients, we are able to identify distinct cell type distributions. We propose that this information is a marker for the overall health/disease status of the corresponding patient, and could ultimately be used for diagnosis, prognosis, and selection of optimal treatment. In the context of multiple novel treatment options for CLL patients, such a tool will be crucial for defining individual patient prognosis, and defining an accurately matched treatment plan. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Errol Strain ◽  
Florian Hahne ◽  
Ryan R. Brinkman ◽  
Perry Haaland

Flow cytometry (FCM) software packages from R/Bioconductor, such as flowCore and flowViz, serve as an open platform for development of new analysis tools and methods. We created plateCore, a new package that extends the functionality in these core packages to enable automated negative control-based gating and make the processing and analysis of plate-based data sets from high-throughput FCM screening experiments easier. plateCore was used to analyze data from a BD FACS CAP screening experiment where five Peripheral Blood Mononucleocyte Cell (PBMC) samples were assayed for 189 different human cell surface markers. This same data set was also manually analyzed by a cytometry expert using the FlowJo data analysis software package (TreeStar, USA). We show that the expression values for markers characterized using the automated approach in plateCore are in good agreement with those from FlowJo, and that using plateCore allows for more reproducible analyses of FCM screening data.


2009 ◽  
Vol 7 (1) ◽  
pp. 44-55 ◽  
Author(s):  
Mark M. Hammer ◽  
Nikesh Kotecha ◽  
Jonathan M. Irish ◽  
Garry P. Nolan ◽  
Peter O. Krutzik

2012 ◽  
Vol 17 (6) ◽  
pp. 806-812 ◽  
Author(s):  
Yen K. Luu ◽  
Payal Rana ◽  
Thomas D. Duensing ◽  
Christopher Black ◽  
Yvonne Will

Methods and techniques used to detect apoptosis have benefited from advances in technologies such as flow cytometry. With a large arsenal of lasers, fluorescent labels, and readily accessible biological targets, it is possible to detect multiple targets with unique combinations of fluorescent spectral signatures from a single sample. Traditional flow cytometry has been limited as a screening tool as the sample throughput has been low, whereas the data analysis and generation of screening relevant results have been complex. The HTFC Screening System running ForeCyt software is an instrument platform designed to perform high-throughput, multiplexed screening with seamless transformation of flow cytometry data into screening hits. We report the results of a screen that simultaneously quantified caspase 3/7 activation, annexin V binding, cell viability, and mitochondrial integrity. Assay performance over 5 days demonstrated robustness, reliability, and performance of the assay. This system is high throughput in that a 384-well plate can be read and fully analyzed within 30 min and is sensitive with an assay window of at least 10-fold for all parameters and a Z′ factor of ≥0.75 for all endpoints and time points. From a screen of 231 compounds, 11 representative toxicity profiles highlighting differential activation of apoptotic pathways were identified.


Sign in / Sign up

Export Citation Format

Share Document