scholarly journals The Expression of Angiopoietin-1 and -2 in the Osteogenesis of Mesenchymal Stem Cells

2021 ◽  
Author(s):  
Jinwen Chen ◽  
Guangchan Yang ◽  
Jie Guo ◽  
Yuqin Liu ◽  
Jinchen Guo ◽  
...  

Objective: The objectives of this study are to clarify whether rat bone marrow derived Mesenchymal stem cells (MSCs) express Ang1 and Ang2 and their expression in the process of osteogenesis in vitro. Material and Methods: MSCs were cultured from rat tibia bone marrow cells and the hemopoietic stem cells were deplete by consistently replacement of the culture medium. The MSCs were induced osteogenesis with mineralization conditional medium and Immunohistochemical and immunofluorescent staining were performed to assess the expression of Ang1 and Ang2. Results: The method used to expand rat MSCs in vitro was applicable, and the cell morphology is spindle-like shape that is consistent with the privous reports. The immunohistochemical staining results showed that both Ang1 and Ang2 were expressed by rat MSCs. Both Ang1 and Ang2 were up-regulated in the process of osteogenesis of rat MSCs. Conclusion: Rat MSCs express both Ang1 and Ang2 which might play critical roles in the osteogenesis in vitro.

2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0235
Author(s):  
Maeda Mohammad ◽  
Ahmed Majeed Al-Shammari ◽  
Rafal H Abdulla ◽  
Aesar Ahmed ◽  
Aseel Khalid

Background: Adipose derived-mesenchymal stem cells have been used as an alternative to bone marrow cells in this study. Objective: We investigated the in vitro isolation, identification, and differentiation of stem cells into neuron cells, in order to produce neuron cells via cell culture, which would be useful in nerve injury treatment. Method: Mouse adipose mesenchymal stem cells were dissected from the abdominal subcutaneous region. Neural differentiation was induced using β-mercaptoethanol. This study included two different neural stage markers, i.e. nestin and neurofilament light-chain, to detect immature and mature neurons, respectively. Results: The immunocytochemistry results showed that the use of β-mercaptoethanol resulted in the successful production of neuron cells. This was attributable to the increase and significant overexpression of the nestin protein during the early exposure period, which resulted in the expression of the highest levels of nestin. In comparison, the expression level of neurofilament light-chain protein also increased with time but less than nestin. Non-treated mesenchymal stem cells, considered as control showed very low expression for both markers. Conclusion: The results of this study indicate that adipose mesenchymal cells represent a good, easily obtainable source of bone marrow cells used to developing the differentiation process.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1503
Author(s):  
Szu-Hsien Wu ◽  
Yu-Ting Liao ◽  
Chi-Han Huang ◽  
Yi-Chou Chen ◽  
En-Rung Chiang ◽  
...  

Adipose-derived mesenchymal stem cells (ADSCs), which tended to neurogenically differentiate spontaneously after achieving high confluence, were observed. Human ADSCs reaching 80% confluence were cultured in DMEM without an inducing factor for 24 hr and then maintained in DMEM plus 1% FBS medium for 7 days. The neurogenic, adipogenic, and osteogenic genes of the factor-induced and confluence-initiated differentiation of the ADSCs and bone marrow-derived mesenchymal stem cells (BMSCs) at passages 3 to 5 were determined and compared using RT-qPCR, and the neurogenic differentiation was confirmed using immunofluorescent staining. In vitro tests revealed that the RNA and protein expression of neuronal markers, including class Ⅲ β-tubulin (TUBB3), microtubule-associated protein 2 (MAP2), neurofilament medium polypeptide (NEFM), neurofilament heavy polypeptide (NEFH), and neurofilament light polypeptide (NEFL), had been enhanced in the confluence-initiated differentiation of the ADSCs. In addition, the expressions of neurotrophins, such as the nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), were also elevated in the confluence-initiated differentiation of the ADSCs. However, the confluent ADSCs did not show a tendency toward spontaneous adipogenic and osteogenic differentiation. Moreover, compared with the confluent ADSCs, the tendency of spontaneous neurogenic, adipogenic, and osteogenic differentiation of the confluent human bone marrow mesenchymal stem cells (BMSCs) was not observed. The results indicated that ADSCs had the potential to spontaneously differentiate into neuron-like cells during the confluent culture period; however, this tendency was not observed in BMSCs.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3098-3098 ◽  
Author(s):  
Rosa M. Yañez ◽  
Maria L. Lamana ◽  
Javier Garcia-Castro ◽  
Manuel Ramirez ◽  
Juan A. Bueren

Abstract Previous studies have shown the immunomodulatory properties of bone marrow mesenchymal stem cells (BM-MSCs), opening the possibility of using these cells for the treatment of graft-versus-host disease (GVHD) in patients transplanted with allogeneic hematopoietic grafts. Additionally, Phase I studies in patients with Crohn’s disease suggested the efficacy of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) for the healing of Crohn’s fistulas. In the present study we have investigated in vitro and in vivo, the immunomodulatory effects of Ad-MSCs, compared to BM-MSCs. We observed that both BM-MSCs and Ad-MSCs were negative for CD34, CD45, CD14, CD31 and MHC class I expression, while positive for CD29, CD44, CD90 and CD105. When studying the immunomodulatory effects of these cells in vitro, we found that - as happened with BM-MSCs - Ad-MSCs did not induce proliferation of allogeneic lymphocytes and were not lysed by cytotoxic T cells or alloreactive natural killer cells, indicating that Ad-MSCs are non-immunogenic. Additionally, the presence of Ad-MSCs inhibited in a dose-dependent fashion, both the mixed lymphocyte reaction (MLR) and the T cell proliferation induced by mitogens. To determine whether cell-to-cell contact between Ad-MSCs and PBMNCs was required for immunosuppression, transwell experiments were conducted. Phytohaemagglutinin (PHA)-stimulated lymphocytes were cultured in the upper chamber of a transwell, while irradiated Ad-MSCs remained in the lower chamber. As observed with BM-MSCs, Ad-MSCs were also capable of suppressing the lymphocytes proliferation in this transwell assay. When conditioned medium from Ad-MSCs was added to the MLR, the immuno-suppressive effect persisted, although at a lower level than that observed in a cell-to-cell contact system. Next we studied whether our in vitro findings were of significance in an in vivo mouse model of haploidentical transplantation. In these experiments irradiated F1(C57Bl/Balbc) recipient mice received 1x107 bone marrow cells from C57Bl mice, together with 2x107 splenocytes from the donor, to induce GVHD. One cohort of recipient mice received additional i.v. infusions of 5x105 mouse Ad-MSCs, administered at periodic intervals for up to 28 days post-transplant. When compared to the control group, the severity of the GVHD was significantly reduced in mice receiving Ad-MSCs. Our results suggest that Ad-MSCs obtained from adipose tissue may constitute a new and readily available source of immunomodulatory cells for the prophylaxis and/or treatment of GVHD in patients transplanted with allogeneic grafts.


2022 ◽  
Vol 12 (3) ◽  
pp. 480-488
Author(s):  
Shaoying Liu ◽  
Chengying Zhang ◽  
Jing Hao ◽  
Yuna Liu ◽  
Sidao Zheng ◽  
...  

Mesenchymal stem cells (MSCs) are the excellent candidates in myocardial regeneration given their easy accessibility, low immunogenicity and high potential for cardiomyocyte differentiation. This work focused on investigating the role of icariin, a main active component of the Traditional Chinese herb epimedium, in human bone marrow-derived MSCs (BMSCs) proliferation and differentiation into cardiomyocytes In Vitro. Human BMSCs were cultivated In Vitro, and MTT assay was conducted to measure their proliferation. On this basis, we selected the optimal icariin dose for promoting the proliferation to induce cardiomyocyte differentiation of MSCs, which were pretreated with or without 5-azacytidine (5-Aza). Cardiac-specific cardiac troponin I (cTnI) and connexin 43 (Cx43)-positive cells were detected by immunofluorescent staining. The differentiation ratio of MSCs was examined by flow cytometry. This study measured early cardiac transcription factors (TFs) Nkx2.5 and GATA4 levels through RT-PCR and Western blotting (WB). As a result, icariin increased MSC proliferation dependent on its dose, and the optimal dose was determined to be 80 μg/l. Furthermore, MSCs showed minimal cardiomyogenic differentiation when induced by icariin alone as confirmed by the expression of cardiac-related markers. Moreover, a synergic interaction was observed when icariin and 5-Aza cooperated to induce cardiomyocyte differentiation of MSCs. In conclusion, Icariin stimulates proliferation and facilitates cardiomyocyte differentiation of MSCs In Vitro and may be potentially used as a new method for enhancing the MSCs efficacy in cardiovascular disease.


2013 ◽  
Author(s):  
Melo Ocarino Natalia de ◽  
Silvia Silva Santos ◽  
Lorena Rocha ◽  
Juneo Freitas ◽  
Reis Amanda Maria Sena ◽  
...  

2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


2016 ◽  
Vol 19 (2) ◽  
pp. 111-116
Author(s):  
Rafal Hussamildeen Abdullah ◽  
◽  
Shahlla Mahdi Salih ◽  
Nahi Yosef Yaseen ◽  
Ahmed Majeed Al-Shammari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document