scholarly journals Neurotrophic control of size regulation during axolotl limb regeneration

2021 ◽  
Author(s):  
Kaylee M. Wells-Enright ◽  
Kristina Kelley ◽  
Mary Baumel ◽  
Warren A. Vieira ◽  
Catherine D. McCusker

AbstractThe mechanisms that regulate the sizing of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the “tiny-limb” stage, that is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the Accessory Limb Model, we have found that the size of the limb can be positively and negatively manipulated by nerve abundance. We have additionally developed a new regenerative assay called the Neural Modified-ALM (NM-ALM), which decouples the source of the nerve from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential and instructive cues to regulate the final size of the regenerating limb.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kaylee M Wells ◽  
Kristina Kelley ◽  
Mary Baumel ◽  
Warren A Vieira ◽  
Catherine D McCusker

The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the 'tiny-limb' stage, that is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the Accessory Limb Model, we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the Neural Modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 315
Author(s):  
Hailin Liu ◽  
Xin Han ◽  
Jue Ruan ◽  
Lian Xu ◽  
Bing He

The final size of plant leaves is strictly controlled by environmental and genetic factors, which coordinate cell expansion and cell cycle activity in space and time; however, the regulatory mechanisms of leaf growth are still poorly understood. Ginkgo biloba is a dioecious species native to China with medicinally and phylogenetically important characteristics, and its fan-shaped leaves are unique in gymnosperms, while the mechanism of G. biloba leaf development remains unclear. In this study we studied the transcriptome of G. biloba leaves at three developmental stages using high-throughput RNA-seq technology. Approximately 4167 differentially expressed genes (DEGs) were obtained, and a total of 12,137 genes were structure optimized together with 732 new genes identified. More than 50 growth-related factors and gene modules were identified based on DEG and Weighted Gene Co-expression Network Analysis. These results could remarkably expand the existing transcriptome resources of G. biloba, and provide references for subsequent analysis of ginkgo leaf development.


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 169-175
Author(s):  
M. Maden

It is shown here that amputated and denervated limbs of larval axolotls dedifferentiate and a proportion of the cells released undergo DNA synthesis and mitosis. When the limb is denervated prior to amputation fewer cells go through the cell cycle, implying the existence of a pool of trophic factor in the limb. Recent work has demonstrated that denervated blastemal cells accumulate in the G1 phase of the cycle. These results strongly argue against the theory that the trophic factor controls the G2 phase. Rather, it is proposed that this factor regulates either the total number of cells cycling or the rate at which they cycle by varying the length of the G1 phase.


2012 ◽  
Vol 370 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Wei Zhu ◽  
Gerald M. Pao ◽  
Akira Satoh ◽  
Gillian Cummings ◽  
James R. Monaghan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document