size regulation
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 34)

H-INDEX

35
(FIVE YEARS 4)

Author(s):  
Tsuyoshi Hirashima

All living tissues and organs have their respective sizes, critical to various biological functions, such as development, growth, and homeostasis. As tissues and organs generally converge to a certain size, intrinsic regulatory mechanisms may be involved in the maintenance of size regulation. In recent years, important findings regarding size regulation have been obtained from diverse disciplines at the molecular and cellular levels. Here, I briefly review the size regulation of biological tissues from the perspective of control systems. This minireview focuses on how feedback systems engage in tissue size maintenance through the mechanical interactions of constituent cell collectives through intracellular signaling. I introduce a general framework of a feedback control system for tissue size regulation, followed by two examples: maintenance of epithelial tissue volume and epithelial tube diameter. The examples deliver the idea of how cellular mechano-response works for maintaining tissue size.


Rice ◽  
2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Lei Liu ◽  
Ying Zhou ◽  
Feng Mao ◽  
Yujuan Gu ◽  
Ziwei Tang ◽  
...  

AbstractGrain size is subtly regulated by multiple signaling pathways in rice. Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level. However, to our knowledge, the molecular mechanism underlying grain size regulation by alternative splicing is largely unknown. GS3, the first identified QTL for grain size in rice, is regulated at the transcriptional and post-translational level. In this study, we identified that GS3 is subject to alternative splicing. GS3.1 and GS3.2, two dominant isoforms, accounts for about 50% and 40% of total transcripts, respectively. GS3.1 encodes the full-length protein, while GS3.2 generated a truncated proteins only containing OSR domain due to a 14 bp intronic sequence retention. Genetic analysis revealed that GS3.1 overexpressors decreased grain size, but GS3.2 showed no significant effect on grain size. Furthermore, we demonstrated that GS3.2 disrupts GS3.1 signaling by competitive occupation of RGB1. Therefore, we draw a conclusion that the alternative splicing of GS3 decreases the amount of GS3.1 and GS3.2 disrupts the GS3.1 signaling to inhibit the negative effects of GS3.1 to fine-tune grain size. Moreover, the mechanism is conserved in cereals rather than in Cruciferae, which is associated with its effects on grain size. The results provide a novel, conserved and important mechanism underlying grain size regulation at the post-transcriptional level in cereals.


2021 ◽  
Author(s):  
Lei Liu ◽  
Ying Zhou ◽  
Feng Mao ◽  
Yujuan Gu ◽  
Ziwei Tang ◽  
...  

Abstract Grain size is subtly regulated by multiple signaling pathways in rice. Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level. However, to our knowledge, the molecular mechanism underlying grain size regulation by alternative splicing is largely unknown. GS3, the first identified QTL for grain size in rice, is regulated at the transcriptional and post-translational level. In this study, we identified that GS3 is subject to alternative splicing. GS3.1 and GS3.2, two dominant isoforms, accounts for about 50% and 40% of total transcripts, respectively. GS3.1 encodes the full-length protein, while GS3.2 generated a truncated proteins only containing OSR domain due to a 14 bp intronic sequence retention. Genetic analysis revealed that GS3.1 overexpressors decreased grain size, but GS3.2 showed no significant effect on grain size. Furthermore, we demonstrated that GS3.2 disrupts GS3.1 signaling by competitive occupation of RGB1. Therefore, we draw a conclusion that the alternative splicing of GS3 decreases the amount of GS3.1 and GS3.2 disrupts the GS3.1 signaling to inhibit the negative effects of GS3.1 to fine-tune grain size. Moreover, the mechanism is conserved in cereals rather than in Cruciferae, which is associated with its effects on grain size. The results provide a novel, conserved and important mechanism underlying grain size regulation at the post-transcriptional level in cereals.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1881
Author(s):  
Vuong Quoc Nhat ◽  
Yusuke Kazama ◽  
Kotaro Ishii ◽  
Sumie Ohbu ◽  
Hisato Kunitake ◽  
...  

Two growth processes, cell proliferation and expansion, determine plant species-specific organ sizes. A large flower mutant in Arabidopsis thaliana, ohbana1 (ohb1), was isolated from a mutant library. In the ohb1 flowers, post-mitotic cell expansion and endoreduplication of nuclear DNA were promoted. The whole-genome resequencing and genetic analysis results showed that the loss of function in MEDIATOR16 (MED16), a mediator complex subunit, was responsible for the large flower phenotypes exhibited by ohb1. A phenotypic analysis of the mutant alleles in MED16 and the double mutants created by crossing ohb1 with representative large flower mutants revealed that MED16 and MED25 share part of the negative petal size regulatory pathways. Furthermore, the double mutant analyses suggested that there were genetically independent pathways leading to cell size restrictions in the floral organs which were not related to the MED complex. Several double mutants also formed larger and heavier seeds than the wild type and single mutant plants, which indicated that MED16 was involved in seed size regulation. This study has revealed part of the size-regulatory network in flowers and seeds through analysis of the ohb1 mutant, and that the size-regulation pathways are partially different between floral organs and seeds.


2021 ◽  
Author(s):  
Vikram Jathar ◽  
Kumud Saini ◽  
Ashish Chauhan ◽  
Ruchi Rani ◽  
Yasunori Ichihashi ◽  
...  

Leaf size is a major determinant of crop performance by influencing leaf physiological processes, such as light capture, transpiration, and gas exchange. Therefore, understanding the genetic basis of leaf size regulation is imperative for crop improvement. Natural variation in leaf size for a crop plant is a valuable genetic resource for a detailed understanding of leaf size regulation. We investigated the mechanism controlling the rice leaf length using cultivated and wild rice accessions that showed remarkable differences for the leaf features. Comparative transcriptomic profiling of the contrasting accessions suggested the involvement of Gibberellic Acid (GA), Growth Regulating Factor (GRF) transcription factors, and cell cycle in the rice leaf size regulation. Leaf kinematics studies showed that the increased domain of cell division activity along with a faster cell production rate drove the longer leaves in the wild rice Oryza australiensis compared to the cultivated varieties. Higher GA levels in the leaves of Oryza australiensis, and GA-induced increase in the rice leaf length via an increase in cell division zone emphasized the key role of GA in rice leaf length regulation. Zone-specific expression and silencing of the GA biosynthesis and signaling genes confirmed that OsGRF7 and OsGRF8 function downstream to GA for controlling cell cycle to determine the rice leaf length. The GA-GRF-cell cycle module for rice leaf length regulation might have contributed to optimizing leaf features during the domestication and could also be a way for plants to achieve leaf plasticity in response to the environment.


Sign in / Sign up

Export Citation Format

Share Document