scholarly journals Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasia

2021 ◽  
Author(s):  
Hyojin Park ◽  
Jessica Furtado ◽  
Mathilde Poulet ◽  
Minhwan Chung ◽  
Sanguk Yun ◽  
...  

Background: Activin receptor-like kinase 1 (ACVRL1, hereafter ALK1) is an endothelial transmembrane serine threonine kinase receptor for BMP family ligands that plays a critical role in cardiovascular development and pathology. Loss-of-function mutations in the ALK1 gene cause type 2 hereditary hemorrhagic telangiectasia (HHT), a devastating disorder that leads to arteriovenous malformations (AVMs). Here we show that ALK1 controls endothelial cell polarization against the direction of blood flow and flow-induced endothelial migration from veins through capillaries into arterioles. Methods: Using Cre lines that recombine in different subsets of arterial, capillary-venous or endothelial tip cells, we showed that capillary-venous Alk1 deletion was sufficient to induce AVM formation in the postnatal retina. Results: ALK1 deletion impaired capillary-venous endothelial cell polarization against the direction of blood flow in vivo and in vitro. Mechanistically, ALK1 deficient cells exhibited increased integrin signaling interaction with VEGFR2, which enhanced downstream YAP/TAZ nuclear translocation. Pharmacological inhibition of integrin or YAP/TAZ signaling rescued flow migration coupling and prevented vascular malformations in Alk1 deficient mice. Conclusions: Our study reveals ALK1 as an essential driver of flow-induced endothelial cell migration and identifies loss of flow-migration coupling as a driver of AVM formation in HHT disease. Integrin-YAP/TAZ signaling blockers are new potential targets to prevent vascular malformations in HHT patients.

Author(s):  
Hyojin Park ◽  
Jessica Furtado ◽  
Mathilde Poulet ◽  
Minhwan Chung ◽  
Sanguk Yun ◽  
...  

Background: Activin receptor-like kinase 1 (ALK1) is an endothelial transmembrane serine threonine kinase receptor for BMP family ligands that plays a critical role in cardiovascular development and pathology. Loss-of-function mutations in the ALK1 gene cause type 2 hereditary hemorrhagic telangiectasia (HHT), a devastating disorder that leads to arteriovenous malformations (AVMs). Here we show that ALK1 controls endothelial cell polarization against the direction of blood flow and flow-induced endothelial migration from veins through capillaries into arterioles. Methods: Using Cre lines that recombine in different subsets of arterial, capillary-venous or endothelial tip cells, we showed that capillary-venous Alk1 deletion was sufficient to induce AVM formation in the postnatal retina. Results: ALK1 deletion impaired capillary-venous endothelial cell polarization against the direction of blood flow in vivo and in vitro . Mechanistically, ALK1 deficient cells exhibited increased integrin signaling interaction with VEGFR2, which enhanced downstream YAP/TAZ nuclear translocation. Pharmacological inhibition of integrin or YAP/TAZ signaling rescued flow migration coupling and prevented vascular malformations in Alk1 deficient mice. Conclusions: Our study reveals ALK1 as an essential driver of flow-induced endothelial cell migration and identifies loss of flow-migration coupling as a driver of AVM formation in HHT disease. Integrin-YAP/TAZ signaling blockers are new potential targets to prevent vascular malformations in HHT patients.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Lilian B. Olsen ◽  
Anette D. Kjeldsen ◽  
Mikael K. Poulsen ◽  
Jens Kjeldsen ◽  
Annette D. Fialla

Abstract Background This report addresses how patients with hereditary hemorrhagic telangiectasia (HHT) and high output cardiac failure (HOCF) due to hepatic vascular malformations, should be evaluated and could be treated. HHT is a genetic disorder, leading to vascular abnormalities with potentially serious clinical implications. In the liver, arteriovenous malformations occur in more than 70% of patients, but only about 8% present clinical symptoms such as HOCF with pulmonary hypertension and less commonly portal hypertension, biliary ischemia and hepatic encephalopathy. Results Three female patients with HHT type 2 and HOCF caused by severe arteriovenous malformations in the liver are presented in this case series. The patients were seen at the HHT-Centre at Odense University Hospital. Treatment with either orthotopic liver transplantation (one patient) or bevacizumab (two patients) was initiated. All patients experienced marked symptom relief and objective improvement. New York Heart Association—class were improved, ascites, peripheral edema and hence diuretic treatment was markedly reduced or discontinued in all three patients. Bevacizumab also resulted in notable effects on epistaxis and anemia. Conclusion Our findings substantiate the importance of identification of symptomatic arteriovenous malformations in the liver in patients with HHT. Bevacizumab may possibly, as suggested in this case series and supported by previous case studies, postpone the time to orthotopic liver transplantation or even make it unnecessary. Bevacizumab represents a promising new treatment option, which should be investigated further in clinical trials.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Sophie Giraud ◽  
Claire Bardel ◽  
Sophie Dupuis-Girod ◽  
Marie-France Carette ◽  
Brigitte Gilbert-Dussardier ◽  
...  

Abstract Background Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant disorder characterized by multiple telangiectases and caused by germline disease-causing variants in the ENG (HHT1), ACVRL1 (HHT2) and, to a lesser extent MADH4 and GDF2, which encode proteins involved in the TGF-β/BMP9 signaling pathway. Common visceral complications of HHT are caused by pulmonary, cerebral, or hepatic arteriovenous malformations (HAVMs). There is large intrafamilial variability in the severity of visceral involvement, suggesting a role for modifier genes. The objective of the present study was to investigate the potential role of ENG, ACVRL1, and of other candidate genes belonging to the same biological pathway in the development of HAVMs. Methods We selected 354 patients from the French HHT patient database who had one disease causing variant in either ENG or ACVRL1 and who underwent hepatic exploration. We first compared the distribution of the different types of variants with the occurrence of HAVMs. Then, we genotyped 51 Tag-SNPs from the Hap Map database located in 8 genes that encode proteins belonging to the TGF-β/BMP9 pathway (ACVRL1, ENG, GDF2, MADH4, SMAD1, SMAD5, TGFB1, TGFBR1), as well as in two additional candidate genes (PTPN14 and ADAM17). We addressed the question of a possible genetic association with the occurrence of HAVMs. Results The proportion of patients with germline ACVRL1 variants and the proportion of women were significantly higher in HHT patients with HAVMs. In the HHT2 group, HAVMs were more frequent in patients with truncating variants. Six SNPs (3 in ACVRL1, 1 in ENG, 1 in SMAD5, and 1 in ADAM17) were significantly associated with HAVMs. After correction for multiple testing, only one remained significantly associated (rs2277383). Conclusions In this large association study, we confirmed the strong relationship between ACVRL1 and the development of HAVMs. Common polymorphisms of ACVRL1 may also play a role in the development of HAVMs, as a modifying factor, independently of the disease-causing variants.


2016 ◽  
Vol 215 (3) ◽  
pp. 415-430 ◽  
Author(s):  
Mailin Julia Hamm ◽  
Bettina Carmen Kirchmaier ◽  
Wiebke Herzog

During cardiovascular development, tight spatiotemporal regulation of molecular cues is essential for controlling endothelial cell (EC) migration. Secreted class III Semaphorins play an important role in guidance of neuronal cell migration and were lately linked to regulating cardiovascular development. Recently, SEMA3D gene disruptions were associated with cardiovascular defects in patients; however, the mechanisms of action were not revealed. Here we show for the first time that Sema3d regulates collective EC migration in zebrafish through two separate mechanisms. Mesenchymal Sema3d guides outgrowth of the common cardinal vein via repulsion and signals through PlexinD1. Additionally, within the same ECs, we identified a novel function of autocrine Sema3d signaling in regulating Actin network organization and EC morphology. We show that this new function requires Sema3d signaling through Neuropilin1, which then regulates Actin network organization through RhoA upstream of Rock, stabilizing the EC sheet. Our findings are highly relevant for understanding EC migration and the mechanisms of collective migration in other contexts.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009690
Author(s):  
Lin Wen ◽  
Tao Zhang ◽  
Jinxuan Wang ◽  
Xuepu Jin ◽  
Muhammad Abdul Rouf ◽  
...  

Recent studies have focused on capillary pruning in various organs and species. However, the way in which large-diameter vessels are pruned remains unclear. Here we show that pruning of the zebrafish caudal vein (CV) from ventral capillaries of the CV plexus in different transgenic embryos is driven by endothelial cell (EC) rearrangement, which involves EC nucleus migration, junction remodeling, and actin cytoskeleton remodeling. Further observation reveals a growing difference in blood flow velocity between the two vessels in CV pruning in zebrafish embryos. With this model, we identify the critical role of Kruppel-like factor 6a (klf6a) in CV pruning. Disruption of klf6a functioning impairs CV pruning in zebrafish. klf6a is required for EC nucleus migration, junction remodeling, and actin cytoskeleton dynamics in zebrafish embryos. Moreover, actin-related protein transgelin 2 (tagln2) is a direct downstream target of klf6a in CV pruning in zebrafish embryos. Together these results demonstrate that the klf6a-tagln2 axis regulates CV pruning by promoting EC rearrangement.


2014 ◽  
Vol 120 (1) ◽  
pp. 87-92 ◽  
Author(s):  
M. Neil Woodall ◽  
Melissa McGettigan ◽  
Ramon Figueroa ◽  
James R. Gossage ◽  
Cargill H. Alleyne

Object Hereditary hemorrhagic telangiectasia (HHT) is a hereditary disorder characterized by mucocutaneous telangiectasias, frequent nosebleeds, and visceral arteriovenous malformations (AVMs). Few reports have outlined the prevalence of the various cerebral vascular malformations found in patients with HHT. The authors set out to define the prevalence of cerebral vascular malformations in a population of HHT patients who underwent imaging with 3-T imaging (MRI/MR angiography [MRA]) of the brain. Methods A retrospective review of prospectively collected data was carried out using a database of 372 HHT patients who were seen and examined at the Georgia Regents University HHT Center and screened with 3-T MRI/MRA. Data were tabulated for numbers and types of vascular malformations in this population. Results Arteriovenous malformations were identified in 7.7%, developmental venous anomalies in 4.3%, and cerebral aneurysms in 2.4% of HHT patients. The HHT AVMs tended to be supratentorial, small, and cortical in this series, findings consistent with other recent studies in the literature. An arteriovenous fistula, cavernous malformation, and capillary telangiectasia were identified in 0.5%, 1%, and 1.9% of HHT patients, respectively. Conclusions Few studies have investigated the prevalence of the various vascular malformations found in HHT patients screened with 3-T MRI/MRA of the brain. Hereditary hemorrhagic telangiectasia AVMs are more likely to be multiple and have a tendency toward small size and cortical location. As such, they are often treated using a single-modality therapy.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2304-2311 ◽  
Author(s):  
Daotai Nie ◽  
Keqin Tang ◽  
Clement Diglio ◽  
Kenneth V. Honn

Abstract Angiogenesis, the formation of new capillaries from preexisting blood vessels, is a multistep, highly orchestrated process involving vessel sprouting, endothelial cell migration, proliferation, tube differentiation, and survival. Eicosanoids, arachidonic acid (AA)-derived metabolites, have potent biologic activities on vascular endothelial cells. Endothelial cells can synthesize various eicosanoids, including the 12-lipoxygenase (LOX) product 12(S)-hydroxyeicosatetraenoic acid (HETE). Here we demonstrate that endogenous 12-LOX is involved in endothelial cell angiogenic responses. First, the 12-LOX inhibitor, N-benzyl-N-hydroxy-5-phenylpentanamide (BHPP), reduced endothelial cell proliferation stimulated either by basic fibroblast growth factor (bFGF) or by vascular endothelial growth factor (VEGF). Second, 12-LOX inhibitors blocked VEGF-induced endothelial cell migration, and this blockage could be partially reversed by the addition of 12(S)-HETE. Third, pretreatment of an angiogenic endothelial cell line, RV-ECT, with BHPP significantly inhibited the formation of tubelike/cordlike structures within Matrigel. Fourth, overexpression of 12-LOX in the CD4 endothelial cell line significantly stimulated cell migration and tube differentiation. In agreement with the critical role of 12-LOX in endothelial cell angiogenic responses in vitro, the 12-LOX inhibitor BHPP significantly reduced bFGF-induced angiogenesis in vivo using a Matrigel implantation bioassay. These findings demonstrate that AA metabolism in endothelial cells, especially the 12-LOX pathway, plays a critical role in angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document