scholarly journals Microsimulation of SARS-CoV-2 Transmission in Society

Author(s):  
Anthony R Green ◽  
Daniel Keep ◽  
Ian Piper

The outbreak of the pandemic disease, COVID-19, has shown that the approaches by different countries has resulted in a range of infection rates through their societies. This has arisen from the varying personal behaviour and tactical use of lockdown strategies within each country. We report the use of microsimulation of a simulated community in Australia, using a discrete infection model within a community of residences, places of work and recreation to demonstrate the applicability of this method to both the current pandemic and to infection more generally. Simulations without any societal intervention on infection spread provided base simulations that could be compared with social and societal controls in the future and which were compared with the initial doubling times of country outbreaks across the world. Different population sizes were represented in some simulations and in other simulations the effects of either social distancing or the use of facial masks as personal behaviours was investigated within the community. Good agreement is found between the initial doubling times for several countries and the simulations that suggests that modelling infection as a collection of individual infections provides an alternative to current epidemiological models. The variation of the basic reproductive number, R0, with time and population size, suggests that one of the fundamentals assumptions in SIR type models is wrong, but varies according to the properties of the population being modelled. Investigation of the infection spread shows that the number of super-spreaders varies with the size of the population and occurs through contacts in clubs, supermarkets, schools and theatres where the source of infection is an employee and where there are high numbers of contacts. The simulations of individual control show that the benefits of social distancing or wearing masks is only fully realised where there is considerable compliance within society to these measures.

2013 ◽  
Vol 791-793 ◽  
pp. 1314-1317
Author(s):  
Wei Juan Pang ◽  
Zhi Xing Hu ◽  
Fu Cheng Liao

This paper investigates the global stability of a viral infection model of HBV infection of hepatocytes with saturated infection rate and intracellular delay. we obtain if the basic reproductive number is less than or equal to one, the infection-free equilibrium is globally asymptotically stable. If its greater than one, we obtain the sufficient conditions for the global stability of the infected equilibrium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 pandemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number ($$R_0$$ R 0 ) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the pandemic.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yongmei Su ◽  
Sinuo Liu ◽  
Shurui Song ◽  
Xiaoke Li ◽  
Yongan Ye

In this paper, a fractional-order HBV model was set up based on standard mass action incidences and quasisteady assumption. The basic reproductive number R0 and the cytotoxic T lymphocytes’ immune-response reproductive number R1 were derived. There were three equilibrium points of the model, and stable analysis of each equilibrium point was given with corresponding hypothesis about R0 or R1. Some numerical simulations were also given based on HBeAg clinical data, and the simulation showed that there existed positive logarithmic correlation between the number of infected cells and HBeAg, which was consistent with the clinical facts. The simulation also showed that the clinical individual differences should be reflected by the fractional-order model.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Huaqin Peng ◽  
Zhiming Guo

A viral infection model with saturated incidence rate and viral infection with delay is derived and analyzed; the incidence rate is assumed to be a specific nonlinear formβxv/(1+αv). The existence and uniqueness of equilibrium are proved. The basic reproductive numberR0is given. The model is divided into two cases: with or without delay. In each case, by constructing Lyapunov functionals, necessary and sufficient conditions are given to ensure the global stability of the models.


2021 ◽  
Vol 8 ◽  
Author(s):  
Igor Salom ◽  
Andjela Rodic ◽  
Ognjen Milicevic ◽  
Dusan Zigic ◽  
Magdalena Djordjevic ◽  
...  

It is hard to overstate the importance of a timely prediction of the COVID-19 pandemic progression. Yet, this is not possible without a comprehensive understanding of environmental factors that may affect the infection transmissibility. Studies addressing parameters that may influence COVID-19 progression relied on either the total numbers of detected cases and similar proxies (which are highly sensitive to the testing capacity, levels of introduced social distancing measures, etc.), and/or a small number of analyzed factors, including analysis of regions that display a narrow range of these parameters. We here apply a novel approach, exploiting widespread growth regimes in COVID-19 detected case counts. By applying nonlinear dynamics methods to the exponential regime, we extract basic reproductive number R0 (i.e., the measure of COVID-19 inherent biological transmissibility), applying to the completely naïve population in the absence of social distancing, for 118 different countries. We then use bioinformatics methods to systematically collect data on a large number of potentially interesting demographics and weather parameters for these countries (where data was available), and seek their correlations with the rate of COVID-19 spread. While some of the already reported or assumed tendencies (e.g., negative correlation of transmissibility with temperature and humidity, significant correlation with UV, generally positive correlation with pollution levels) are also confirmed by our analysis, we report a number of both novel results and those that help settle existing disputes: the absence of dependence on wind speed and air pressure, negative correlation with precipitation; significant positive correlation with society development level (human development index) irrespective of testing policies, and percent of the urban population, but absence of correlation with population density per se. We find a strong positive correlation of transmissibility on alcohol consumption, and the absence of correlation on refugee numbers, contrary to some widespread beliefs. Significant tendencies with health-related factors are reported, including a detailed analysis of the blood type group showing consistent tendencies on Rh factor, and a strong positive correlation of transmissibility with cholesterol levels. Detailed comparisons of obtained results with previous findings, and limitations of our approach, are also provided.


Author(s):  
Hamid Khataee ◽  
Istvan Scheuring ◽  
Andras Czirok ◽  
Zoltan Neufeld

AbstractA better understanding of how the COVID-19 epidemic responds to social distancing efforts is required for the control of future outbreaks and to calibrate partial lock-downs. We present quantitative relationships between key parameters characterizing the COVID-19 epidemiology and social distancing efforts of nine selected European countries. Epidemiological parameters were extracted from the number of daily deaths data, while mitigation efforts are estimated from mobile phone tracking data. The decrease of the basic reproductive number (R0) as well as the duration of the initial exponential expansion phase of the epidemic strongly correlates with the magnitude of mobility reduction. Utilizing these relationships we decipher the relative impact of the timing and the extent of social distancing on the total death burden of the epidemic.


2021 ◽  
Vol 7 (2) ◽  
pp. 3083-3096
Author(s):  
Tuersunjiang Keyoumu ◽  
◽  
Wanbiao Ma ◽  
Ke Guo

<abstract><p>In this paper, a dynamic model of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) with periodic coefficients is proposed and studied. By using the continuation theorem of the coincidence degree theory, we obtain some sufficient conditions for the existence of positive periodic solutions of the model. The periodic model degenerates to an autonomous case, and our conditions can be degenerated to the basic reproductive number $ R_0 &gt; 1 $. Finally, we give some numerical simulations to illustrate our main theoretical results.</p></abstract>


Author(s):  
Hao Lei ◽  
Xifeng Wu ◽  
Xiao Wang ◽  
Modi Xu ◽  
Yu Xie ◽  
...  

Abstract Background Nonpharmaceutical interventions (NPIs) against coronavirus disease 2019 (COVID-19) are vital to reducing transmission risks. However, the relative efficiency of social distancing against COVID-19 remains controversial, since social distancing and isolation/quarantine were implemented almost at the same time in China. Methods In this study, surveillance data of COVID-19 and seasonal influenza in 2018–2020 were used to quantify the relative efficiency of NPIs against COVID-19 in China, since isolation/quarantine was not used for the influenza epidemics. Given that the relative age-dependent susceptibility to influenza and COVID-19 may vary, an age-structured susceptible/infected/recovered model was built to explore the efficiency of social distancing against COVID-19 under different population susceptibility scenarios. Results The mean effective reproductive number, Rt, of COVID-19 before NPIs was 2.12 (95% confidence interval [CI], 2.02–2.21). By 11 March 2020, the overall reduction in Rt of COVID-19 was 66.1% (95% CI, 60.1–71.2%). In the epidemiological year 2019–20, influenza transmissibility was reduced by 34.6% (95% CI, 31.3–38.2%) compared with transmissibility in epidemiological year 2018–19. Under the observed contact pattern changes in China, social distancing had similar efficiency against COVID-19 in 3 different scenarios. By assuming the same efficiency of social distancing against seasonal influenza and COVID-19 transmission, isolation/quarantine and social distancing could lead to 48.1% (95% CI, 35.4–58.1%) and 34.6% (95% CI, 31.3–38.2%) reductions of the transmissibility of COVID-19, respectively. Conclusions Though isolation/quarantine is more effective than social distancing, given that the typical basic reproductive number of COVID-19 is 2–3, isolation/quarantine alone could not contain the COVID-19 pandemic effectively in China.


Author(s):  
Laura Di Domenico ◽  
Giulia Pullano ◽  
Chiara E. Sabbatini ◽  
Pierre-Yves Boëlle ◽  
Vittoria Colizza

More than half of the global population is currently under strict forms of social distancing, with more than 90 countries in lockdown, including France. Estimating the expected impact of the lockdown, and the potential effectiveness of different exit strategies is critical to inform decision makers on the management of the COVID-19 health crisis. We use a stochastic age-structured transmission model integrating data on age profile and social contacts in the Île-de-France region to (i) assess the current epidemic situation, (ii) evaluate the expected impact of the lockdown implemented in France on March 17, 2020, and (iii) estimate the effectiveness of possible exit strategies. The model is calibrated on hospital admission data of the region before lockdown and validated on syndromic and virological surveillance data. Different types and durations of social distancing interventions are simulated, including a progressive lifting of the lockdown targeted on specific classes of individuals (e.g. allowing a larger proportion of the population to go to work, while protecting the elderly), and large-scale testing. We estimate the basic reproductive number at 3.0 [2.8, 3.2] (95% confidence interval) prior to lockdown and the population infected by COVID-19 as of April 5 to be in the range 1% to 6%. The average number of contacts is predicted to be reduced by 80% during lockdown, leading to a substantial reduction of the reproductive number (RLD =0.68 [0.62-0.73]). Under these conditions, the epidemic curve reaches ICU system capacity and slowly decreases during lockdown. Lifting the lockdown with no exit strategy would lead to a second wave largely overwhelming the healthcare system. Extensive case-finding, testing and isolation are required to envision social distancing strategies that gradually relax current constraints (larger fraction of individuals going back to work, progressive reopening of activities), while keeping schools closed and seniors isolated. As France faces the first wave of COVID-19 pandemic in lockdown, intensive forms of social distancing are required in the upcoming months due to the currently low population immunity. Extensive case-finding and isolation would allow the partial release of the socio-economic pressure caused by extreme measures, while avoiding healthcare demand exceeding capacity. Response planning needs to urgently prioritize the logistics and capacity for these interventions.


2020 ◽  
Vol 13 (05) ◽  
pp. 2050045
Author(s):  
Junxian Yang ◽  
Shoudong Bi

In this paper, the dynamical behaviors for a five-dimensional virus infection model with Latently Infected Cells and Beddington–DeAngelis incidence are investigated. In the model, four delays which denote the latently infected delay, the intracellular delay, virus production period and CTL response delay are considered. We define the basic reproductive number and the CTL immune reproductive number. By using Lyapunov functionals, LaSalle’s invariance principle and linearization method, the threshold conditions on the stability of each equilibrium are established. It is proved that when the basic reproductive number is less than or equal to unity, the infection-free equilibrium is globally asymptotically stable; when the CTL immune reproductive number is less than or equal to unity and the basic reproductive number is greater than unity, the immune-free infection equilibrium is globally asymptotically stable; when the CTL immune reproductive number is greater than unity and immune response delay is equal to zero, the immune infection equilibrium is globally asymptotically stable. The results show that immune response delay may destabilize the steady state of infection and lead to Hopf bifurcation. The existence of the Hopf bifurcation is discussed by using immune response delay as a bifurcation parameter. Numerical simulations are carried out to justify the analytical results.


Sign in / Sign up

Export Citation Format

Share Document