scholarly journals Safety and immunogenicity of a recombinant DNA COVID-19 vaccine containing the coding regions of the spike and nucleocapsid proteins: Preliminary results from an open-label, phase 1 trial in healthy adults aged 19-55 years

Author(s):  
Jin Young Ahn ◽  
Jeongsoo Lee ◽  
You Suk Suh ◽  
Young Goo Song ◽  
Yoon-Jeong Choi ◽  
...  

Background : We investigated the safety and immunogenicity of two recombinant COVID-19 DNA vaccine candidates in first-in-human trials. GX-19 contains plasmid DNA encoding SARS-CoV-2 spike protein, and GX-19N contains plasmid DNA encoding SARS-CoV-2 receptor binding domain (RBD) foldon and nucleocapsid protein (NP) as well as plasmid DNA encoding SARS-CoV-2 spike protein. Methods : Two open-label phase 1 trials of GX-19 and GX-19N safety and immunogenicity were performed in healthy adults aged 19-55 years. GX-19 trial participants received two vaccine injections (1.5 mg or 3.0 mg, 1:1 ratio) four weeks apart. GX-19N trial participants received two 3.0 mg vaccine injections four weeks apart. Findings : Between June 17 and July 30 and December 28 and 31, 2020, 40 and 21 participants were enrolled in the GX-19 and GX-19N trials, respectively. Thirty-two participants (52.5%) reported 80 treatment-emergent adverse events (AE) after vaccination. All solicited AEs were mild except one case of moderate fatigue reported in the 1.5 mg GX-19 group. Binding antibody responses increased after vaccination in all groups. The geometric mean titers (GMTs) of spike-binding antibodies on day 57 were 85.74, 144.20, and 201.59 in the 1.5 mg, 3.0 mg GX-19 groups and the 3.0 mg GX-19N group, respectively. In GX-19N group, neutralizing antibody response (50% neutralizing titer using FRNT) significantly increased after vaccination, but GMT of neutralizing antibody on day 57 (37.26) was lower than those from human convalescent serum (288.78). GX-19N induced stronger T cell responses than GX-19. The magnitude of GX-19N-induced T cell responses was comparable to those observed in the convalescent PBMCs. GX-19N induced both SARS-CoV-2 spike- and NP-specific T cell responses, and the amino acid sequences of 15-mer peptides containing NP-specific T cell epitopes identified in GX-19N-vaccinated participants were identical with those of diverse SARS-CoV-2 variants Interpretation : GX-19N is safe, tolerated and induces humoral and broad SARS-CoV-2-specific T cell response which may enable cross-reactivity to emerging SARS-CoV-2 variants. Funding : This research was supported by Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HQ20C0016, Republic of Korea).

Author(s):  
Ugur Sahin ◽  
Alexander Muik ◽  
Evelyna Derhovanessian ◽  
Isabel Vogler ◽  
Lena M Kranz ◽  
...  

An effective vaccine is needed to halt the spread of the SARS-CoV-2 pandemic. Recently, we reported safety, tolerability and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 COVID-19 vaccine trial with BNT162b1, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Here we present antibody and T cell responses after BNT162b1 vaccination from a second, non-randomized open-label phase 1/2 trial in healthy adults, 18-55 years of age. Two doses of 1 to 50 μg of BNT162b1 elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with RBD-binding IgG concentrations clearly above those in a COVID-19 convalescent human serum panel (HCS). Day 43 SARS-CoV-2 serum neutralising geometric mean titers were 0.7-fold (1 μg) to 3.5-fold (50 μg) those of HCS. Immune sera broadly neutralised pseudoviruses with diverse SARS-CoV-2 spike variants. Most participants had TH1 skewed T cell immune responses with RBD-specific CD8+ and CD4+ T cell expansion. Interferon (IFN)γ was produced by a high fraction of RBD-specific CD8+ and CD4+ T cells. The robust RBD-specific antibody, T-cell and favourable cytokine responses induced by the BNT162b1 mRNA vaccine suggest multiple beneficial mechanisms with potential to protect against COVID-19.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S397-S397
Author(s):  
Susan Johnson ◽  
Clarissa Martinez ◽  
Mario Cortese ◽  
Josefina Martinez ◽  
Shaily Garg ◽  
...  

Abstract Background Covid-19 has accelerated global demand for easily distributed vaccines. Furthermore, as variant SARS-CoV-2 strains that circumvent antibody responses emerge, cross-protective vaccines provide substantial public health benefits. Vaxart is developing a shelf stable oral tablet vaccine that incorporates both the spike (S) and the more conserved nucleocapsid (N) proteins. Vaxart’s vaccine platform uses a non-replicating adenovirus and a TLR3 agonist as an adjuvant. Methods In an open-label phase 1 clinical study, 35 healthy subjects received either a single low (1x1010 IU; n=15) or high (5x1010 IU; n=15) dose of the vaccine candidate VXA-CoV2-1 with a small cohort receiving 2 low doses. PBMCs were taken at pre- and 7 days post-vaccination and restimulated with S and N peptides from SARS-CoV-2 or the 4 human endemic coronaviruses (HCoV). Cells were stained for CD4/CD8/CD107a (surface) and IFNγ/TNFα (intracellular). Subjects that received an intramuscular (i.m.) mRNA vaccine had PBMCs taken at the same timepoints and were compared in the same assay. Results The study’s results indicate that the VXA-CoV2-1 tablet was well tolerated. The majority of subjects had an increase in S-specific anti-viral CD8+ T cell responses. 19/26 (73%) subjects had a measurable CD8+ T cell response on day 8 above baseline, on average 1.5-4.6%. In a comparator experiment with the 2 SARS-CoV-2 i.m. mRNA vaccines, VXA-CoV2-1 outperformed other vaccine candidates with a >3.5-fold increase in S specific antiviral CD8 T cell responses. T cell responses specific to the 4 endemic HCoV were increased by 0.6% in subjects given VXA-CoV2-1. Conclusion Here we describe a room temperature stable tablet that induces SARS-CoV-2 S specific CD8 T cells of high magnitude after one dose in humans. Overall, the level of antiviral SARS-CoV-2 specific T cells, particularly IFNg-producing CD8s, induced following oral immunization with VXA-CoV2-1 are of higher magnitude than the mRNA vaccines currently in use against COVID-19. T cell responses against 4 endemic HCoV were also induced. Because T cells may be important in protecting against death and severe infection, these results suggest that VXA-CoV2-1 could be cross-protective against a wide array of emerging pandemic coronaviruses. Disclosures Susan Johnson, PhD, Vaxart (Employee) Clarissa Martinez, MPH, Vaxart (Employee) Mario Cortese, PhD, Vaxart (Employee) Josefina Martinez, n/a, Vaxart (Employee) Shaily Garg, BS, Vaxart (Employee) Nadine Peinovich, MPH, Vaxart (Employee) Emery Dora, n/a, Vaxart (Employee) Sean Tucker, PhD, Vaxart (Employee)


2019 ◽  
Author(s):  
Jun-Gu Kang ◽  
Kyeongseok Jeon ◽  
Hooncheol Choi ◽  
Yuri Kim ◽  
Hong-Il Kim ◽  
...  

AbstractSevere fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by SFTS virus (SFTSV) infection. Despite a gradual increase of SFTS cases and high mortality in endemic regions, no specific viral therapy nor vaccine is available. Here, we developed a single recombinant plasmid DNA encoding SFTSV genes, Gn and Gc together with NP-NS fusion antigen, as a vaccine candidate. The viral antigens were fused with Fms-like tyrosine kinase-3 ligand (Flt3L) and IL-12 gene was incorporated into the plasmid to enhance cell-mediated immunity. Vaccination with the DNA provides complete protection of IFNAR KO mice upon lethal SFTSV challenge, whereas immunization with a plasmid without IL-12 gene resulted in partial protection. Since we failed to detect antibodies against surface glycoproteins, Gn and Gc, in the immunized mice, antigen-specific cellular immunity, as confirmed by enhanced antigen-specific T cell responses, might play major role in protection. Finally, we evaluated the degree of protective immunity provided by protein immunization of the individual glycoprotein, Gn or Gc. Although both protein antigens induced a significant level of neutralizing activity against SFTSV, Gn vaccination resulted in relatively higher neutralizing activity and better protection than Gc vaccination. However, both antigens failed to provide complete protection. Given that DNA vaccines have failed to induce sufficient immunogenicity in human trials when compared to protein vaccines, optimal combinations of DNA and protein elements, proper selection of target antigens, and incorporation of efficient adjuvant, need to be further investigated for SFTSV vaccine development.Author summarySevere fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infection endemic to East Asia including China, Korea, and Japan. Gradual rise of disease incidence and relatively high mortality have become a serious public health problem in the endemic countries. In this study, we developed a recombinant plasmid DNA encoding four antigens, Gn, Gc, NP, and NS, of SFTS virus (SFTSV) as a vaccine candidate. In order to enhance cell-mediated immunity, the viral antigens were fused with Flt3L and IL-2 gene was incorporated into the plasmid. Immunization with the DNA vaccine provides complete protection against lethal SFTSV infection in IFNAR KO mice. Antigen-specific T cell responses might play a major role in the protection since we observed enhanced T cell responses specific to the viral antigens but failed to detect neutralizing antibody in the immunized mice. When we immunized with either viral glycoprotein, Gn protein induced relatively higher neutralizing activity and better protection against SFTSV infection than Gc antigen, but neither generated complete protection. Therefore, an optimal combination of DNA and protein elements, as well as proper selection of target antigens, might be required to produce an effective SFTSV vaccine.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0132288 ◽  
Author(s):  
Nicolas Bruffaerts ◽  
Lasse E. Pedersen ◽  
Gaëlle Vandermeulen ◽  
Véronique Préat ◽  
Norbert Stockhofe-Zurwieden ◽  
...  

2021 ◽  
Author(s):  
Jenny G Low ◽  
Ruklanthi de Alwis ◽  
Shiwei Chen ◽  
Shirin Kalimuddin ◽  
Yan Shan Leong ◽  
...  

Background The pandemic of coronavirus disease-19 (Covid-19) continues to afflict the lives and livelihoods of many as global demand for vaccine supply remains unmet. Methods Phase 1 of this trial (N=42) assessed the safety, tolerability and immunogenicity of ascending levels of one-dose ARCT-021, a self-amplifying mRNA vaccine against Covid-19. Phase 2 (N=64) tested two-doses of ARCT-021 given 28 days apart. Both young and older adults were enrolled. The primary safety outcomes were local and systemic solicited adverse events (AEs) reported immediately and up to 7 days post-inoculation and unsolicited events reported up to 56 days after inoculation. Secondary and exploratory outcomes were antibody and T cell responses to vaccination, respectively. Results ARCT-021 was well tolerated up to one 7.5 μg dose and two 5.0 μg doses. Local solicited AEs, namely injection-site pain and tenderness, as well as systemic solicited AEs, such as fatigue, headache and myalgia, were more common in ARCT-021 than placebo recipients, and in younger than older adults. Seroconversion rate for anti-S IgG was 100% in all cohorts except for the 1 μg one-dose in younger adults and the 7.5 μg one-dose in older adults, which were each 80%. Neutralizing antibody titers increased with increasing dose although the responses following 5.0 μg and 7.5 μg ARCT-021 were similar. Anti-S IgG titers overlapped with those in Covid-19 convalescent plasma. ARCT-021 also elicited T-cell responses against the S glycoprotein. Conclusion Taken collectively, the favorable safety and immunogenicity profiles support further clinical development of ARCT-021.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 307
Author(s):  
Yong Bok Seo ◽  
You Suk Suh ◽  
Ji In Ryu ◽  
Hwanhee Jang ◽  
Hanseul Oh ◽  
...  

The unprecedented and rapid spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) has motivated the need for a rapidly producible and scalable vaccine. Here, we developed a synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19. In mice, immunization with GX-19 elicited not only S-specific systemic and pulmonary antibody responses but also Th1-biased T cell responses in a dose-dependent manner. GX-19-vaccinated nonhuman primates seroconverted rapidly and exhibited a detectable neutralizing antibody response as well as multifunctional CD4+ and CD8+ T cell responses. Notably, when the immunized nonhuman primates were challenged at 10 weeks after the last vaccination with GX-19, they had reduced viral loads in contrast to non-vaccinated primates as a control. These findings indicate that GX-19 vaccination provides a durable protective immune response and also support further development of GX-19 as a vaccine candidate for SARS-CoV-2.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 134
Author(s):  
Zekun Mu ◽  
Barton F. Haynes ◽  
Derek W. Cain

The SARS-CoV-2 pandemic introduced the world to a new type of vaccine based on mRNA encapsulated in lipid nanoparticles (LNPs). Instead of delivering antigenic proteins directly, an mRNA-based vaccine relies on the host’s cells to manufacture protein immunogens which, in turn, are targets for antibody and cytotoxic T cell responses. mRNA-based vaccines have been the subject of research for over three decades as a platform to protect against or treat a variety of cancers, amyloidosis and infectious diseases. In this review, we discuss mRNA-based approaches for the generation of prophylactic and therapeutic vaccines to HIV. We examine the special immunological hurdles for a vaccine to elicit broadly neutralizing antibodies and effective T cell responses to HIV. Lastly, we outline an mRNA-based HIV vaccination strategy based on the immunobiology of broadly neutralizing antibody development.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A444-A444
Author(s):  
Cathy Eng ◽  
Joaquina Baranda ◽  
Matthew Taylor ◽  
Michael Gordon ◽  
Ursula Matulonis ◽  
...  

BackgroundSQZ-PBMC-HPV is a therapeutic cancer vaccine created with Cell Squeeze®, a proprietary cell-engineering system. SQZ-PBMC-HPV is a novel cancer vaccine generated from peripheral blood mononuclear cells (PBMC) squeezed with HPV16 E6 and E7 antigens, resulting in delivery into the cytosol. The resulting antigen presenting cells (APCs) provide enhanced antigen presentation on MHC-I to potentially elicit robust, antigen-specific CD8+ T cell responses. Importantly, SQZ-PBMC-HPV are neither genetically modified nor immune effector cells.Studies in MHC-I knockout mice demonstrated that activation of antigen specific CD8+ tumor infiltrating lymphocytes (TILs) was a direct effect of cytosolic antigen delivery to PBMCs. In the murine TC-1 tumor model, tumor regression correlated with an influx of HPV16-specific CD8+ TILs. In vitro studies with human volunteer PBMCs demonstrated that each subset is capable of inducing CD8+ T cell responses. The Phase 1 study includes a significant biomarker program to investigate whether pharmacodynamic effects observed in non-clinical studies correlate with potential clinical benefit. Immunogenic and pharmacodynamic endpoints include Elispot assays to measure frequency of interferon gamma secreting cells, as well as quantification and characterization of TILs and tumor microenvironment. In addition, various cytokine responses and circulating cell-free HPV16 DNA levels in plasma are measured.MethodsSQZ-PBMC-HPV-101 (NCT04084951) is open for enrollment to HLA A*02+ patients with HPV16+ recurrent, locally advanced or metastatic solid tumors and includes escalation cohorts for monotherapy and in combination with atezolizumab. After initial demonstration of safety, the study assesses dose effect by testing different cell dose levels, the effect of prolonged antigen priming in Cycle 1 [APC administration on Day 1 only compared to Days 1 and 2 (double priming)] and the impact of treatment duration to identify the optimal dose regimen. The cycle length is 3 weeks, and patients will receive SQZ-PBMC-HPV for up to 1 year or until available autologous drug product is exhausted. Atezolizumab will be administered for up to 1 year. Eligible patients including but not limited to anal, cervical and head and neck tumors will undergo a single leukapheresis at the study site. The manufacturing process includes a maturation step and takes less than 24 hours. The vein-to-vein time for the 1st administration is approximately one week. Patients must have a lesion that can be biopsied with acceptable clinical risk and agree to have a fresh biopsy at Screening and on study. A Study Safety Committee is in place. No formal statistical hypothesis testing will be performed.ResultsN/AConclusionsN/ATrial RegistrationNCT04084951Ethics ApprovalThe study is registered on clinicaltrials.gov was approved by the Ethics Board of all institution listed as recruiting.


Sign in / Sign up

Export Citation Format

Share Document