scholarly journals Tetracycline exposure alters key gut microbiota in Africanized honey bees (Apis mellifera scutellata x spp.)

2021 ◽  
Author(s):  
Kilmer Oliveira Soares ◽  
Celso JB Oliveira ◽  
Adriana Evangelista Rodrigues ◽  
Priscylla Carvalho Vasconcelos ◽  
Nubia MV Silva ◽  
...  

Honey bees play a critical role in ecosystem health, biodiversity maintenance, and crop yield. Antimicrobials, such as tetracyclines, are used widely used across agriculture, medicine, and in bee keeping, and bees can be directly or indirectly exposed to tetracycline residues in the environment. In European honey bees, tetracycline exposure has been linked with shifts in the gut microbiota that negatively impact bee health. However, the effects of antimicrobials on Africanized honey bee gut microbiota have not been examined. The aim of this study was to investigate the effects of tetracycline exposure on the gut microbial community of Africanized honey bees (Apis mellifera scutellata x spp), which are important pollinators in South, Central, and North America. Bees (n=1,000) were collected from hives in Areia-PB, Northeastern Brazil, placed into plastic chambers and kept under controlled temperature and humidity conditions. The control group (CON) was fed daily with syrup (10g) consisting of a 1:1 solution of demerara sugar and water, plus a solid protein diet (10g) composed of 60% soy extract and 40% sugar syrup. The tetracycline group (TET) was fed identically but with the addition of tetracycline hydrochloride (450 ug/g) to the sugar syrup. Bees were sampled from each group before (day 0), and after tetracycline exposure (days 3, 6 and 9). Abdominal contents dissected out of each bee underwent DNA extraction and 16S rRNA sequencing (V3-V4) on an Illumina MiSeq. Sequences were filtered and processed through QIIME2 and DADA2. Microbial community composition and diversity and differentially abundant taxa were evaluated by treatment and time. Bee gut microbial composition (Jaccard) and diversity (Shannon) differed significantly and increasingly over time and between CON and TET groups. Tetracycline exposure was associated with decreased relative abundances of Bombella and Fructobacillus, along with decreases in key core microbiota such as Snodgrassella, Gilliamella, Rhizobiaceae, and Apibacter. These microbes are critical for nutrient metabolism and pathogen defense, and decreased abundances of these microbes could negatively affect bee health. Considering the global ecological and economic importance of honey bees as pollinators, it is critical to understand the effects of agrochemicals including antimicrobials on honey bees.

2021 ◽  
Vol 9 ◽  
Author(s):  
Kilmer Oliveira Soares ◽  
Celso José Bruno de Oliveira ◽  
Adriana Evangelista Rodrigues ◽  
Priscylla Carvalho Vasconcelos ◽  
Núbia Michelle Vieira da Silva ◽  
...  

Honey bees play a critical role in ecosystem health, biodiversity maintenance, and crop yield. Antimicrobials, such as tetracyclines, are used widely in agriculture, medicine, and in bee keeping, and bees can be directly or indirectly exposed to tetracycline residues in the environment. In European honey bees, tetracycline exposure has been linked with shifts in the gut microbiota that negatively impact bee health. However, the effects of antimicrobials on Africanized honey bee gut microbiota have not been examined. The aim of this study was to investigate the effects of tetracycline exposure on the gut microbial community of Africanized honey bees (Apis mellifera scutellata x spp.), which are important pollinators in South, Central, and North America. Bees (n = 1,000) were collected from hives in Areia-PB, Northeastern Brazil, placed into plastic chambers and kept under controlled temperature and humidity conditions. The control group (CON) was fed daily with syrup (10 g) consisting of a 1:1 solution of demerara sugar and water, plus a solid protein diet (10 g) composed of 60% soy extract and 40% sugar syrup. The tetracycline group (TET) was fed identically but with the addition of tetracycline hydrochloride (450 μg/g) to the sugar syrup. Bees were sampled from each group before (day 0), and after tetracycline exposure (days 3, 6, and 9). Abdominal contents dissected out of each bee underwent DNA extraction and 16S rRNA sequencing (V3-V4) on an Illumina MiSeq. Sequences were filtered and processed through QIIME2 and DADA2. Microbial community composition and diversity and differentially abundant taxa were evaluated by treatment and time. Bee gut microbial composition (Jaccard) and diversity (Shannon) differed significantly and increasingly over time and between CON and TET groups. Tetracycline exposure was associated with decreased relative abundances of Bombella and Fructobacillus, along with decreases in key core microbiota such as Snodgrassella, Gilliamella, Rhizobiaceae, and Apibacter. These microbes are critical for nutrient metabolism and pathogen defense, and it is possible that decreased abundances of these microbes could negatively affect bee health. Considering the global ecological and economic importance of honey bees as pollinators, it is critical to understand the effects of agrochemicals including antimicrobials on honey bees.


PEDIATRICS ◽  
1994 ◽  
Vol 94 (1) ◽  
pp. 115-117
Author(s):  
Barbara K. Ariue

African honey bees, Apis mellifera scutellata (formerly adsonii) were imported to Brazil in 1956 to introduce a strain of bees with increased honey production which were more suited for the tropical climate.1,2 A year later, 26 African queen bees and their accompanying colonies accidentally escaped.1,2 The African queen bees soon began mating with established European bee races resulting in the hybrid Africanized honey bees.2 Like the pure African bees, the Africanized bees are more defensive with a greater tendency to sting than European bees.3 They respond quickly to the slightest disturbance of their nest and can send out many thousands of bees.


2020 ◽  
Vol 86 (18) ◽  
Author(s):  
Erick V. S. Motta ◽  
Myra Mak ◽  
Tyler K. De Jong ◽  
J. Elijah Powell ◽  
Angela O'Donnell ◽  
...  

ABSTRACT Honey bees are important agricultural pollinators that rely on a specific gut microbiota for the regulation of their immune system and defense against pathogens. Environmental stressors that affect the bee gut microbial community, such as antibiotics and glyphosate, can indirectly compromise bee health. Most of the experiments demonstrating these effects have been done under laboratory conditions with pure chemicals. Here, we investigated the oral and topical effects of various concentrations of glyphosate in a herbicide formulation on the honey bee gut microbiota and health under laboratory and field conditions. Under all of these conditions, the formulation, dissolved in sucrose syrup or water, affected the abundance of beneficial bacteria in the bee gut in a dose-dependent way. Mark-recapture experiments also demonstrated that bees exposed to the formulation were more likely to disappear from the colony, once reintroduced after exposure. Although no visible effects were observed for hives exposed to the formulation in field experiments, challenge trials with the pathogen Serratia marcescens, performed under laboratory conditions, revealed that bees from hives exposed to the formulation exhibited increased mortality compared with bees from control hives. In the field experiments, glyphosate was detected in honey collected from exposed hives, showing that worker bees transfer xenobiotics to the hive, thereby extending exposure and increasing the chances of exposure to recently emerged bees. These findings show that different routes of exposure to glyphosate-based herbicide can affect honey bees and their gut microbiota. IMPORTANCE The honey bee gut microbial community plays a vital role in immune response and defense against opportunistic pathogens. Environmental stressors, such as the herbicide glyphosate, may affect the gut microbiota, with negative consequences for bee health. Glyphosate is usually sprayed in the field mixed with adjuvants, which enhance herbicidal activity. These adjuvants may also enhance undesired effects in nontargeted organisms. This seems to be the case for glyphosate-based herbicide on honey bees. As we show in this study, oral exposure to either pure glyphosate or glyphosate in a commercial herbicide formulation perturbs the gut microbiota of honey bees, and topical exposure to the formulation also has a direct effect on honey bee health, increasing mortality in a dose-dependent way and leaving surviving bees with a perturbed microbiota. Understanding the effects of herbicide formulations on honey bees may help to protect these important agricultural pollinators.


2016 ◽  
Vol 4 (2) ◽  
pp. 13-16
Author(s):  
Ricardo Gonçalves Santos ◽  
Daiana Da Silva Sombra ◽  
Herica Girlane Tertulino Domingos ◽  
Lionel Segui Gonçalves

In the Semiarid region of Northeast Brazil, adverse environmental conditions such as high radiation and temperature affect the balance of homeostasis of the colonies of Africanized honey bees (Apis mellifera L.). This research aimed to evaluate the rate of acceptance of Africanized honey bees larvae (Important stage of process of queen-rearing) in hives installed in the shade and under full sunlight in the semiarid climate of Northeastern Brazil. 10 colonies of honeybees (5 in the shade and 5 under full sunlight) were orphaned and prepared with young workers and food, having standardized biomass (equal population conditions) to receive frames containing 60-100 queen cell cups with larvae up to 24 hour-old. The acceptance percentage of transferred or grafted larvae to each colony was measured 72 hours after carrying out transfers and means were compared by the Student’s t-test at 5% probability. The colonies under shade conditions showed acceptance rate of 68.82 ± 17.03%, significantly higher (P = 0.0044) than the colonies subjected to direct sunlight with only 52.13 ± 16.29%. Thus, for the production of queens and royal jelly of Africanized honeybees in the semiarid climate of Northeast Brazil, it is strongly recommended the installation of apiaries in shady locations.Taxa de aceitação de larvas de abelhas africanizadas em colmeias mantidas em sombreamento e sob exposição solar direta no Nordeste BrasileiroNo Semiárido do Nordeste Brasileiro, as condições adversas do ambiente como alta radiação e temperatura afetam o equilíbrio da homeostase das colônias de abelhas africanizadas (Apis mellifera L.). Este trabalho objetivou avaliar a porcentagem de aceitação de larvas de abelhas africanizadas (etapa importante do processo de produção de rainha) em colmeias instaladas à sombra e sob radiação direta do sol na região semiárida do Nordeste Brasileiro. Para isso, 10 colônias (5 no sol e 5 na sombra) foram orfanadas e tiveram a biomassa padronizada para receber quadros portando de 60 a 100 cúpulas contendo larvas com até 24 horas de vida. O percentual de aceitação das larvas transferidas para cada colônia foi avaliado 72 horas após a realização das transferências e os dados foram comparadas pelo teste t-Student a 5% de probabilidade. As colônias sob condições de sombra apresentaram taxa de aceitação de 68,82 ± 17,03%, sendo significativamente maior (P = 0,0044) do que as colônias submetidas à radiação direta do sol, com apenas 52,13 ± 16,29%. Conclui-se que para a produção de rainhas e de geleia real de abelhas africanizadas no semiárido nordestino, torna-se extremamente recomendável a instalação de apiários em locais sombreados.


2021 ◽  
Vol 9 (3) ◽  
pp. 481
Author(s):  
Daniel Borges ◽  
Ernesto Guzman-Novoa ◽  
Paul H. Goodwin

Nosema ceranae is a microsporidian fungus that parasitizes the midgut epithelial cells of honey bees, Apis mellifera. Due to the role that midgut microorganisms play in bee health and immunity, food supplementation with prebiotics and probiotics may assist in the control of N. ceranae. The dietary fiber prebiotics acacia gum, inulin, and fructooligosaccharides, as well as the commercial probiotics Vetafarm Probotic, Protexin Concentrate single-strain (Enterococcus faecium), and Protexin Concentrate multi-strain (Lactobacillus acidophilus, L. plantarum, L. rhamnosus, L. delbrueckii, Bifidobacterium bifidum, Streptococcus salivarius, and E. faecium) were tested for their effect on N. ceranae spore loads and honey bee survivorship. Bees kept in cages were inoculated with N. ceranae spores and single-dose treatments were administered in sugar syrup. Acacia gum caused the greatest reduction in N. ceranae spore numbers (67%) but also significantly increased bee mortality (62.2%). However, Protexin Concentrate single-strain gave similarly reduced spore numbers (59%) without affecting the mortality. In a second experiment, multiple doses of the probiotics revealed significantly reduced spore numbers with 2.50 mg/mL Vetafarm Probotic, and 0.25, 1.25, and 2.50 mg/mL Protexin Concentrate single-strain. Mortality was also significantly reduced with 1.25 mg/mL Protexin Concentrate single-strain. N. ceranae-inoculated bees fed 3.75 mg/mL Vetafarm Probotic had higher survival than N. ceranae-inoculated bees, which was similar to that of non-inoculated bees, while N. ceranae-inoculated bees fed 2.50 mg/mL Protexin Concentrate single-strain, had significantly higher survival than both N. ceranae-inoculated and non-inoculated bees. Protexin Concentrate single-strain is promising as it can reduce N. ceranae proliferation and increase bee survivorship of infected bees, even compared to healthy, non-infected bees.


Sign in / Sign up

Export Citation Format

Share Document