scholarly journals High-fat diet induced loss of GABAergic inhibition decouples intrinsic and synaptic excitability in AgRP neurons

2021 ◽  
Author(s):  
Austin C. Korgan ◽  
Wei Wei ◽  
Sophie L.A. Martin ◽  
Catherine C. Kaczorowski ◽  
Kristen M.S. O'Connell

Obesity is a progressive, relapsing disease with few therapies. Diet and lifestyle interventions are effective but are often temporary and many individuals regain weight. High-fat diet increases the excitability of AgRP neurons, a critical neuronal population for the regulation of food intake and body weight. Here we investigate the plasticity of AgRP neurons and the impact of high-fat diet on modulation by synaptic input. We find that diet-induced hyperexcitability of AgRP neurons is not reversed by a lower-fat diet intervention. High-fat diet is associated with changes in the synaptic modulation of AgRP neurons, with a paradoxical increase in inhibitory input accompanied by a loss of GABA-mediated inhibition due to a depolarizing shift in the reversal potential of the GABA-evoked Cl- current. These findings reveal that high-fat diet leads to decoupling of intrinsic and synaptic excitability in AgRP neurons, such that hyperexcitability of AgRP neurons persists despite an increase in inhibitory input, revealing a mechanism for the difficulty in sustaining weight loss.

2021 ◽  
Author(s):  
Qiao Jie ◽  
Yue-Zhong Ren ◽  
Yi-wen Wu

High-fat diets(HFD)are defined as lipids accounting for exceeded 30% of total energy in-take, and current research is mostly 45% and 60%. With a view of the tendency that patients who...


2005 ◽  
Vol 332 (1) ◽  
pp. 142-148 ◽  
Author(s):  
Anthony G. Passerini ◽  
Congzhu Shi ◽  
Nadeene M. Francesco ◽  
Peiying Chuan ◽  
Elisabetta Manduchi ◽  
...  

2015 ◽  
Vol 26 (11) ◽  
pp. 1166-1173 ◽  
Author(s):  
Manuela Meireles ◽  
Cláudia Marques ◽  
Sónia Norberto ◽  
Iva Fernandes ◽  
Nuno Mateus ◽  
...  
Keyword(s):  
High Fat ◽  

2018 ◽  
Vol 19 (3) ◽  
pp. S10
Author(s):  
B. Menta ◽  
A. Nicol ◽  
J. Ryals ◽  
M. Winter ◽  
K. McCarson ◽  
...  

2017 ◽  
Vol 29 (10) ◽  
pp. e12528 ◽  
Author(s):  
M. van den Top ◽  
F.-Y. Zhao ◽  
R. Viriyapong ◽  
N. J. Michael ◽  
A. C. Munder ◽  
...  

2019 ◽  
Vol 74 ◽  
pp. 121-134 ◽  
Author(s):  
Sarah J. Spencer ◽  
Bashirah Basri ◽  
Luba Sominsky ◽  
Alita Soch ◽  
Monica T. Ayala ◽  
...  

2019 ◽  
Vol 317 (2) ◽  
pp. E298-E311 ◽  
Author(s):  
Colin S. McCoin ◽  
Alex Von Schulze ◽  
Julie Allen ◽  
Kelly N. Z. Fuller ◽  
Qing Xia ◽  
...  

The impact of sexual dimorphism and mitophagy on hepatic mitochondrial adaptations during the treatment of steatosis with physical activity are largely unknown. Here, we tested if deficiencies in liver-specific peroxisome proliferative activated-receptor-γ coactivator-1α (PGC-1α), a transcriptional coactivator of biogenesis, and BCL-2/ADENOVIRUS EIB 19-kDa interacting protein (BNIP3), a mitophagy regulator, would impact hepatic mitochondrial adaptations (respiratory capacity, H2O2production, mitophagy) to a high-fat diet (HFD) and HFD plus physical activity via voluntary wheel running (VWR) in both sexes. Male and female wild-type (WT), liver-specific PGC-1α heterozygote (LPGC-1α), and BNIP3 null mice were thermoneutral housed (29–31°C) and divided into three groups: sedentary-low-fat diet (LFD), 16 wk of (HFD), or 16 wk of HFD with VWR for the final 8 wk (HFD + VWR) ( n = 5–7/sex/group). HFD did not impair mitochondrial respiratory capacity or coupling in any group; however, HFD + VWR significantly increased maximal respiratory capacity only in WT and PGC-1α females. Males required VWR to elicit mitochondrial adaptations that were inherently present in sedentary females including greater mitochondrial coupling control and reduced H2O2production. Females had overall reduced markers of mitophagy, steatosis, and liver damage. Steatosis and markers of liver injury were present in sedentary male mice on the HFD and were effectively reduced with VWR despite no resolution of steatosis. Overall, reductions in PGC-1α and loss of BNIP3 only modestly impacted mitochondrial adaptations to HFD and HFD + VWR with the biggest effect seen in BNIP3 females. In conclusion, hepatic mitochondrial adaptations to HFD and treatment of HFD-induced steatosis with VWR are more dependent on sex than PGC-1α or BNIP3.


Toxicology ◽  
2019 ◽  
Vol 414 ◽  
pp. 27-34 ◽  
Author(s):  
Weihong Xu ◽  
Jie Yu ◽  
Zhigang Jiang ◽  
Wenxia Yan ◽  
Shengnan Li ◽  
...  

Hepatology ◽  
2009 ◽  
Vol 51 (6) ◽  
pp. 2234-2235 ◽  
Author(s):  
Adriana L. Burgueño ◽  
Julieta Carabelli ◽  
Silvia Sookoian ◽  
Carlos J. Pirola

Sign in / Sign up

Export Citation Format

Share Document