scholarly journals CpG Transformer for imputation of single-cell methylomes

2021 ◽  
Author(s):  
Gaetan De Waele ◽  
Jim Clauwaert ◽  
Gerben Menschaert ◽  
Willem Waegeman

Motivation: The adoption of current single-cell DNA methylation sequencing protocols is hindered by incomplete coverage, outlining the need for effective imputation techniques. The task of imputing single-cell (methylation) data requires models to build an understanding of underlying biological processes. Current approaches compress intercellular methylation dependencies in some way and, hence, do not provide a general-purpose way of learning interactions between neighboring CpG sites both within- and between cells. Results: We adapt the transformer neural network architecture to operate on methylation matrices through the introduction of a novel 2D sliding window self-attention. The obtained CpG Transformer displays state-of-the-art performances on a wide range of scBS-seq and scRRBS-seq datasets. Furthermore, we demonstrate the interpretability of CpG Transformer and illustrate its rapid transfer learning properties, allowing practitioners to train models on new datasets with a limited computational and time budget. Availability and Implementation: CpG Transformer is freely available at https://github.com/gdewael/cpg-transformer.

AI ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 261-273
Author(s):  
Mario Manzo ◽  
Simone Pellino

COVID-19 has been a great challenge for humanity since the year 2020. The whole world has made a huge effort to find an effective vaccine in order to save those not yet infected. The alternative solution is early diagnosis, carried out through real-time polymerase chain reaction (RT-PCR) tests or thorax Computer Tomography (CT) scan images. Deep learning algorithms, specifically convolutional neural networks, represent a methodology for image analysis. They optimize the classification design task, which is essential for an automatic approach with different types of images, including medical. In this paper, we adopt a pretrained deep convolutional neural network architecture in order to diagnose COVID-19 disease from CT images. Our idea is inspired by what the whole of humanity is achieving, as the set of multiple contributions is better than any single one for the fight against the pandemic. First, we adapt, and subsequently retrain for our assumption, some neural architectures that have been adopted in other application domains. Secondly, we combine the knowledge extracted from images by the neural architectures in an ensemble classification context. Our experimental phase is performed on a CT image dataset, and the results obtained show the effectiveness of the proposed approach with respect to the state-of-the-art competitors.


Author(s):  
Yanlin Han ◽  
Piotr Gmytrasiewicz

This paper introduces the IPOMDP-net, a neural network architecture for multi-agent planning under partial observability. It embeds an interactive partially observable Markov decision process (I-POMDP) model and a QMDP planning algorithm that solves the model in a neural network architecture. The IPOMDP-net is fully differentiable and allows for end-to-end training. In the learning phase, we train an IPOMDP-net on various fixed and randomly generated environments in a reinforcement learning setting, assuming observable reinforcements and unknown (randomly initialized) model functions. In the planning phase, we test the trained network on new, unseen variants of the environments under the planning setting, using the trained model to plan without reinforcements. Empirical results show that our model-based IPOMDP-net outperforms the other state-of-the-art modelfree network and generalizes better to larger, unseen environments. Our approach provides a general neural computing architecture for multi-agent planning using I-POMDPs. It suggests that, in a multi-agent setting, having a model of other agents benefits our decision-making, resulting in a policy of higher quality and better generalizability.


Author(s):  
Youngmin Ro ◽  
Jongwon Choi ◽  
Dae Ung Jo ◽  
Byeongho Heo ◽  
Jongin Lim ◽  
...  

In person re-identification (ReID) task, because of its shortage of trainable dataset, it is common to utilize fine-tuning method using a classification network pre-trained on a large dataset. However, it is relatively difficult to sufficiently finetune the low-level layers of the network due to the gradient vanishing problem. In this work, we propose a novel fine-tuning strategy that allows low-level layers to be sufficiently trained by rolling back the weights of high-level layers to their initial pre-trained weights. Our strategy alleviates the problem of gradient vanishing in low-level layers and robustly trains the low-level layers to fit the ReID dataset, thereby increasing the performance of ReID tasks. The improved performance of the proposed strategy is validated via several experiments. Furthermore, without any addons such as pose estimation or segmentation, our strategy exhibits state-of-the-art performance using only vanilla deep convolutional neural network architecture.


Author(s):  
P. Bodani ◽  
K. Shreshtha ◽  
S. Sharma

<p><strong>Abstract.</strong> This paper addresses the task of semantic segmentation of orthoimagery using multimodal data e.g. optical RGB, infrared and digital surface model. We propose a deep convolutional neural network architecture termed OrthoSeg for semantic segmentation using multimodal, orthorectified and coregistered data. We also propose a training procedure for supervised training of OrthoSeg. The training procedure complements the inherent architectural characteristics of OrthoSeg for preventing complex co-adaptations of learned features, which may arise due to probable high dimensionality and spatial correlation in multimodal and/or multispectral coregistered data. OrthoSeg consists of parallel encoding networks for independent encoding of multimodal feature maps and a decoder designed for efficiently fusing independently encoded multimodal feature maps. A softmax layer at the end of the network uses the features generated by the decoder for pixel-wise classification. The decoder fuses feature maps from the parallel encoders locally as well as contextually at multiple scales to generate per-pixel feature maps for final pixel-wise classification resulting in segmented output. We experimentally show the merits of OrthoSeg by demonstrating state-of-the-art accuracy on the ISPRS Potsdam 2D Semantic Segmentation dataset. Adaptability is one of the key motivations behind OrthoSeg so that it serves as a useful architectural option for a wide range of problems involving the task of semantic segmentation of coregistered multimodal and/or multispectral imagery. Hence, OrthoSeg is designed to enable independent scaling of parallel encoder networks and decoder network to better match application requirements, such as the number of input channels, the effective field-of-view, and model capacity.</p>


2020 ◽  
Author(s):  
Gogulan Karunanithy ◽  
Flemming Hansen

<p>In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple <sup>13</sup>C<sub>α</sub>-<sup>13</sup>C<sub>β</sub> couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data. </p>


2021 ◽  
Author(s):  
Gogulan Karunanithy ◽  
Flemming Hansen

<p>In recent years, the transformative potential of deep neural networks (DNNs) for analysing and interpreting NMR data has clearly been recognised. However, most applications of DNNs in NMR to date either struggle to outperform existing methodologies or are limited in scope to a narrow range of data that closely resemble the data that the network was trained on. These limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on time domain NMR data. We first demonstrate the effectiveness of this architecture in reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained with arbitrary sampling schedules, with a range of sweep widths, and a variety of other acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we present a network based on the FID-Net architecture that can efficiently virtually decouple <sup>13</sup>C<sub>α</sub>-<sup>13</sup>C<sub>β</sub> couplings in HNCA protein NMR spectra in a single shot analysis, while at the same time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in a wide range of scenarios, without retraining, paves the way for their widespread usage in analysing NMR data. </p>


2021 ◽  
Author(s):  
Alexei Belochitski ◽  
Vladimir Krasnopolsky

Abstract. The ability of Machine-Learning (ML) based model components to generalize to the previously unseen inputs, and the resulting stability of the models that use these components, has been receiving a lot of recent attention, especially when it comes to ML-based parameterizations. At the same time, ML-based emulators of existing parameterizations can be stable, accurate, and fast when used in the model they were specifically designed for. In this work we show that shallow-neural-network-based emulators of radiative transfer parameterizations developed almost a decade ago for a state-of-the-art GCM are robust with respect to the substantial structural and parametric change in the host model: when used in two seven month-long experiments with the new model, they not only remain stable, but generate realistic output. Aspects of neural network architecture and training set design potentially contributing to stability of ML-based model components are discussed.


2019 ◽  
Author(s):  
Jacob Witten ◽  
Zack Witten

AbstractAntimicrobial peptides (AMPs) are naturally occurring or synthetic peptides that show promise for treating antibiotic-resistant pathogens. Machine learning techniques are increasingly used to identify naturally occurring AMPs, but there is a dearth of purely computational methods to design novel effective AMPs, which would speed AMP development. We collected a large database, Giant Repository of AMP Activities (GRAMPA), containing AMP sequences and associated MICs. We designed a convolutional neural network to perform combined classification and regression on peptide sequences to quantitatively predict AMP activity against Escherichia coli. Our predictions outperformed the state of the art at AMP classification and were also effective at regression, for which there were no publicly available comparisons. We then used our model to design novel AMPs and experimentally demonstrated activity of these AMPs against the pathogens E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Data, code, and neural network architecture and parameters are available at https://github.com/zswitten/Antimicrobial-Peptides.


2018 ◽  
Author(s):  
Pierre-Cyril Aubin-Frankowski ◽  
Jean-Philippe Vert

AbstractSingle-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulation networks (GRN) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to the technology. In this work we propose a new method named GRISLI for de novo GRN inference from scRNA-seq data. GRISLI infers a velocity vector field in the space of scRNA-seq data from profiles of individual data, and models the dynamics of cell trajectories with a linear ordinary differential equation to reconstruct the underlying GRN with a sparse regression procedure. We show on real data that GRISLI outperforms a recently proposed state-of-the-art method for GRN reconstruction from scRNA-seq data.


Sign in / Sign up

Export Citation Format

Share Document