scholarly journals Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey

2021 ◽  
Author(s):  
Anastasios Galanis ◽  
Philippos Vardakas ◽  
Martin Reczko ◽  
Vaggelis Harokopos ◽  
Pantelis Hatzis ◽  
...  

Honeybees (Apis mellifera) continue to succumb to human and environmental pressures despite their crucial role in providing essential ecosystem services. Owing to their foraging and honey production activities, honeybees form complex relationships with species across all domains, such as plants, viruses, bacteria (symbiotic and pathogenic), and other hive pests, making honey a valuable biomonitoring tool for assessing their ecological niche. Thus, the application of honey shotgun metagenomics (SM) has paved the way for a detailed description of the species honeybees interact with, in order to better assess the multiple factors governing their health. Here, we describe the implementation of optimized honey DNA extraction methodology coupled to direct shotgun metagenomics (Direct-SM) analysis, and to a computationally optimised and validated pipeline for taxonomic classification of species detected in honey. By comparing honey collected across 3 harvesting seasons in a stable apiary, we show that Direct-SM can describe the variability of sampled plant species, revealing honeybee behavioural adaptation. In addition, we reveal that Direct-SM can non-invasively capture the diversity of species comprising the core and non-core bacterial communities of the gut microbiome. Finally, we show that this methodology is applicable for the monitoring of pathogens and particularly for the biomonitoring varroa infestation. These results suggest that Direct-SM can accurately and comprehensively describe honeybee ecological niches and can be deployed to assess bee health in the field.

Author(s):  
A. Townsend Peterson ◽  
Jorge Soberón ◽  
Richard G. Pearson ◽  
Robert P. Anderson ◽  
Enrique Martínez-Meyer ◽  
...  

This book deals with ecological niche modeling and species distribution modeling, two emerging fields that address the ecological, geographic, and evolutionary dimensions of geographic distributions of species. It provides a conceptual overview of the complex relationships between ecological niches and geographic distributions of species, both across space and (perhaps to a lesser degree) through time. The emphasis is on how that conceptual framework relates to ecological niche modeling and species distribution modeling, which the book argues are complementary and are most broadly applicable to diverse questions regarding the ecology and geography of biodiversity phenomena. Part I of the book introduces the conceptual framework for thinking about and discussing the distributional ecology of species, Part II is concerned with the data and tools that have been used in the early development of the field, and Part III focuses on real-world situations to which these tools have been applied.


2020 ◽  
Vol 177 (3) ◽  
pp. 333-345
Author(s):  
Alex Mosseler ◽  
John Major ◽  
Don Ostaff ◽  
John Ascher

2020 ◽  
Vol 153 (3) ◽  
pp. 337-347
Author(s):  
Mario Ernesto Suárez-Mota ◽  
José Luis Villaseñor

Background and aims – The hypothesis of ecological niche conservatism postulates that closely related species share ecologically similar environments; that is, they tend to maintain the characteristics of their fundamental niche over time. The objective of this study is to evaluate the similarity and equivalence of the ecological niches among species of the genus Zaluzania (Asteraceae), characteristic of the Mexican arid and semi-arid regions, to infer their potential niche conservatism. Methods – Based on critically reviewed herbarium occurrence data, potential distribution models for eight species of Zaluzania were generated using the Maxent algorithm. The overlap between potential distribution areas was then evaluated using equivalence and ecological niche parameters implemented in the ENMTools software; for this we quantified the degree of overlap and similarity between the niches using the equivalence (D) and similarity (I) parameters.Key results – The resulting models show that species display areas of high suitability along the Mexican dry regions, as well as overlapping heterogeneous values. All models showed high AUC (Area Under the Curve) values (> 0.8). The D and I values between each pair of species showed low values of overlap.Conclusions – Each species of the genus shows a fundamental niche distinct from their sister species. The genus thus offers an example of niche divergence among species, with each one adapting to different environmental pressures. Our results do not support the hypothesis of niche conservatism in the genus, suggesting that the species evolved in divergent environments.


2019 ◽  
Vol 64 (1) ◽  
pp. 205-226 ◽  
Author(s):  
Christina M. Grozinger ◽  
Michelle L. Flenniken

Bees—including solitary, social, wild, and managed species—are key pollinators of flowering plant species, including nearly three-quarters of global food crops. Their ecological importance, coupled with increased annual losses of managed honey bees and declines in populations of key wild species, has focused attention on the factors that adversely affect bee health, including viral pathogens. Genomic approaches have dramatically expanded understanding of the diversity of viruses that infect bees, the complexity of their transmission routes—including intergenus transmission—and the diversity of strategies bees have evolved to combat virus infections, with RNA-mediated responses playing a prominent role. Moreover, the impacts of viruses on their hosts are exacerbated by the other major stressors bee populations face, including parasites, poor nutrition, and exposure to chemicals. Unraveling the complex relationships between viruses and their bee hosts will lead to improved understanding of viral ecology and management strategies that support better bee health.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134735 ◽  
Author(s):  
Jennifer Hawkins ◽  
Natasha de Vere ◽  
Adelaide Griffith ◽  
Col R. Ford ◽  
Joel Allainguillaume ◽  
...  

2021 ◽  
Author(s):  
Christopher Mayack ◽  
Tuğçe Rükün ◽  
Neslim Ercan ◽  
Ece Canko ◽  
Bihter Avşar ◽  
...  

Abstract Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees, the effects of pesticides on colour vision and memory retention remain unknown. We trained free flying foragers to an unscented artificial flower patch presenting yellow flower stimuli to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between flower colour and food reward. We found that for concentrations higher than 4% of LD50 foraging honey bees no longer preferentially visited the yellow flowers and bees reverted back to baseline foraging preferences for blue flowers, with a complete loss of flower constancy. Higher pesticide dosages also resulted in a significant decrease in CaMKII and CREB gene expression, revealing a plausible mechanism to explain the disruption of bee foraging performance. Within important bee pollinators, colour vision is highly conserved and essential for efficient nutrition collection and survival. We thus show that to maintain efficient pollination services bees require environments free from neonicotinoid pesticides.


2015 ◽  
Vol 30 (4) ◽  
pp. 352-363 ◽  
Author(s):  
LeeAnn Kung ◽  
Casey G Cegielski ◽  
Hsiang-Jui Kung

In this study, we examine the influence of a firm's environmental factors on its intention to adopt software as a service (SaaS). We operationalized our assessment of a firm's environmental pressures as mimetic, coercive and normative pressures and examined the moderating role of perceived technology complexity. Mimetic forces are pressures to copy or emulate other organizations’ activities, systems or structures. Coercive pressures are formal or informal pressures exerted on organizations by other organizations upon which they are dependent. Normative forces describe the effect of professional standards and the influence of professional communities on an organization. We empirically tested our research model using data from 289 valid survey responses. The results provide support for the assertion that there are both significant direct and interaction effects that influence a firm's SaaS adoption intention. Most important was the significant interaction effects between mimetic pressure and perceived technology complexity. This suggests that the complex relationships proposed by institutional theory and diffusion of innovation help to describe how environmental pressures and perceived technology complexity combine to affect intention to adopt an emerging technology. The theoretical contributions of this study are (i) we integrated, tested and validated mature theories in today's supply chain era with a new but rapidly diffusing technology, (ii) and we answered the call to include practical technology artifacts in information systems studies. From a practical perspective, through this work managers may develop a better understanding regarding environmental factors and whether or not they should consider these issues for their firm when formulating an intention to adopt SaaS.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 132 ◽  
Author(s):  
Anthony D. Vaudo ◽  
John F. Tooker ◽  
Harland M. Patch ◽  
David J. Biddinger ◽  
Michael Coccia ◽  
...  

Pollinator nutritional ecology provides insights into plant–pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species’ protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant–pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant–pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.


Sign in / Sign up

Export Citation Format

Share Document