scholarly journals Bee foraging preferences on three willow ( Salix ) species: Effects of species, plant sex, sampling day and time of day

2020 ◽  
Vol 177 (3) ◽  
pp. 333-345
Author(s):  
Alex Mosseler ◽  
John Major ◽  
Don Ostaff ◽  
John Ascher

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heidi L. Kolkert ◽  
Rhiannon Smith ◽  
Romina Rader ◽  
Nick Reid

AbstractFactors influencing the efficacy of insectivorous vertebrates in providing natural pest control services inside crops at increasing distances from the crop edge are poorly understood. We investigated the identity of vertebrate predators (birds and bats) and removal of sentinel prey (mealworms and beetles) from experimental feeding trays in cotton crops using prey removal trials, camera traps and observations. More prey was removed during the day than at night, but prey removal was variable at the crop edge and dependent on the month (reflecting crop growth and cover) and time of day. Overall, the predation of mealworms and beetles was 1-times and 13-times greater during the day than night, respectively, with predation on mealworms 3–5 times greater during the day than night at the crop edge compared to 95 m inside the crop. Camera traps identified many insectivorous birds and bats over crops near the feeding trays, but there was no evidence of bats or small passerines removing experimental prey. A predation gradient from the crop edge was evident, but only in some months. This corresponded to the foraging preferences of open-space generalist predators (magpies) in low crop cover versus the shrubby habitat preferred by small passerines, likely facilitating foraging away from the crop edge later in the season. Our results are in line with Optimal Foraging Theory and suggest that predators trade-off foraging behaviour with predation risk at different distances from the crop edge and levels of crop cover. Understanding the optimal farm configuration to support insectivorous bird and bat populations can assist farmers to make informed decisions regarding in-crop natural pest control and maximise the predation services provided by farm biodiversity.



2021 ◽  
Author(s):  
Anastasios Galanis ◽  
Philippos Vardakas ◽  
Martin Reczko ◽  
Vaggelis Harokopos ◽  
Pantelis Hatzis ◽  
...  

Honeybees (Apis mellifera) continue to succumb to human and environmental pressures despite their crucial role in providing essential ecosystem services. Owing to their foraging and honey production activities, honeybees form complex relationships with species across all domains, such as plants, viruses, bacteria (symbiotic and pathogenic), and other hive pests, making honey a valuable biomonitoring tool for assessing their ecological niche. Thus, the application of honey shotgun metagenomics (SM) has paved the way for a detailed description of the species honeybees interact with, in order to better assess the multiple factors governing their health. Here, we describe the implementation of optimized honey DNA extraction methodology coupled to direct shotgun metagenomics (Direct-SM) analysis, and to a computationally optimised and validated pipeline for taxonomic classification of species detected in honey. By comparing honey collected across 3 harvesting seasons in a stable apiary, we show that Direct-SM can describe the variability of sampled plant species, revealing honeybee behavioural adaptation. In addition, we reveal that Direct-SM can non-invasively capture the diversity of species comprising the core and non-core bacterial communities of the gut microbiome. Finally, we show that this methodology is applicable for the monitoring of pathogens and particularly for the biomonitoring varroa infestation. These results suggest that Direct-SM can accurately and comprehensively describe honeybee ecological niches and can be deployed to assess bee health in the field.



2009 ◽  
Vol 102 (4) ◽  
pp. 1472-1481 ◽  
Author(s):  
Robert L. Mangan ◽  
Aleena Tarshis Moreno


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134735 ◽  
Author(s):  
Jennifer Hawkins ◽  
Natasha de Vere ◽  
Adelaide Griffith ◽  
Col R. Ford ◽  
Joel Allainguillaume ◽  
...  


2020 ◽  
Vol 16 (9) ◽  
pp. 20200424
Author(s):  
M. Wyatt Toure ◽  
Fletcher J. Young ◽  
W. Owen McMillan ◽  
Stephen H. Montgomery

For many pollinators, flowers provide predictable temporal schedules of resource availability, meaning an ability to learn time-dependent information could be widely beneficial. However, this ability has only been demonstrated in a handful of species. Observations of Heliconius butterflies suggest that they may have an ability to form time-dependent foraging preferences. Heliconius are unique among butterflies in actively collecting pollen, a dietary behaviour linked to spatio-temporally faithful ‘trap-line' foraging. Time dependency of foraging preferences is hypothesized to allow Heliconius to exploit temporal predictability in alternative pollen resources. Here, we provide the first experimental evidence in support of this hypothesis, demonstrating that Heliconius hecale can learn opposing colour preferences in two time periods. This shift in preference is robust to the order of presentation, suggesting that preference is tied to the time of day and not due to ordinal or interval learning. However, this ability is not limited to Heliconius , as previously hypothesized, but also present in a related genus of non-pollen feeding butterflies. This demonstrates time learning likely pre-dates the origin of pollen feeding and may be prevalent across butterflies with less specialized foraging behaviours.



Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 132 ◽  
Author(s):  
Anthony D. Vaudo ◽  
John F. Tooker ◽  
Harland M. Patch ◽  
David J. Biddinger ◽  
Michael Coccia ◽  
...  

Pollinator nutritional ecology provides insights into plant–pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species’ protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant–pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant–pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.



Apidologie ◽  
2019 ◽  
Vol 50 (4) ◽  
pp. 425-435 ◽  
Author(s):  
Michelle TOSHACK ◽  
Elizabeth ELLE


Author(s):  
M. Wyatt Toure ◽  
Fletcher J. Young ◽  
W. Owen McMillan ◽  
Stephen H. Montgomery

AbstractFor many pollinators, flowers provide predictable temporal schedules of resource availability, meaning an ability to learn time-dependent information could be widely beneficial. However, this ability has only been demonstrated in a handful of species. Observational studies of Heliconius butterflies suggest that they may have an ability to form time-dependent foraging preferences. Heliconius are unique among butterflies in actively collecting and digesting pollen, a dietary behaviour linked to spatiotemporally faithful ‘trap-line’ foraging. Time-dependency of foraging preferences is hypothesised to allow Heliconius to exploit temporal predictability in alternative pollen resources, as well as contributing to optimal use of learnt foraging routes. Here, we provide the first experimental evidence in support of this hypothesis, demonstrating that Heliconius hecale can learn opposing colour preferences in two time periods. This shift in preference is robust to the order of presentation, suggesting that preference is tied to the time of day and not due to ordinal learning. However, we also show that this ability is not limited to Heliconius, as previously hypothesised, but is also present in a related genus of non-pollen feeding butterflies. This demonstrates that time learning pre-dates the origin of pollen-feeding and may be prevalent across butterflies with less specialized foraging behaviours.





Sign in / Sign up

Export Citation Format

Share Document