scholarly journals Biological, Molecular And Phiysiological Characterization Of Four Soybean mosaic virus Isolates Present In Argentine Soybean Crops

2021 ◽  
Author(s):  
Mariel Maugeri Suarez ◽  
Marianela Soledad Rodriguez ◽  
Nicolas Bejerman ◽  
Irma Graciela Laguna ◽  
Patricia Rodriguez Pardina

Soybean mosaic virus (SMV) causes systemic infections in soybean plants, leading to chlorotic mosaic and producing significant yield losses. The virus is widely distributed in all soybean production areas in the world. In Argentina, three geographical isolates were identified: Marcos Juarez (MJ), Manfredi (M), and North Western Argentina (NOA), and another isolate named "Planta Vinosa" (PV), which causes severe necrosis symptoms in some cultivars. Here, the biological, molecular and physiological characterization of these isolates was performed for the first time. Three of the four isolates showed a low genetic divergence in the evaluated genes (P1, CI and CP). Although SMV-NOA and SMV-PV had high homology at the sequence level, they showed wide differences in pathogenicity, seed mottling and the ability of transmission by seeds or aphids, as well as in physiological effects. SMV-NOA caused early alterations (before symptom appearance, BS) in quenching of PSII and MDA content in leaves with respect to the other isolates. After the appearance of macroscopic symptoms (late symptoms, LS), SMV-M caused a significant increase in the content of MDA, total soluble sugars, and starch with respect to the other isolates. Thus, early alterations of quenching of PSII and soluble sugars might have an impact on late viral symptoms. Likewise, SMV-MJ developed more severe symptoms in the susceptible Davis cultivar than in DM 4800. Therefore, our results show differences in genome, biological properties and physiological effects among SMV isolates as well as different interactions of SMV-MJ with two soybean cultivars.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhongyan Wei ◽  
Chenyang Mao ◽  
Chong Jiang ◽  
Hehong Zhang ◽  
Jianping Chen ◽  
...  

Cowpea mild mottle virus (CPMMV; genus Carlavirus) can be a destructive pathogen of soybean but there is little information about its distribution on soybean in China. Here, we collected soybean plants with virus-like symptoms from 11 fields widely scattered within China, and used high-throughput sequencing to determine their virome. Most samples (8/11) were co-infected by the well-studied potyvirus soybean mosaic virus (SMV) and CPMMV, and the remaining three samples were singly infected with CPMMV. The near-complete genome sequences of the 11 CPMMV isolates were determined and phylogenetic analysis showed that they constituted a new genetic clade. One recombination event was detected among the CPMMV sequences, and the isolate CPMMV_JL_CC was identified as recombinant. In mechanical inoculation assays, co-infection by CPMMV and SMV resulted in an enhancement of disease symptoms, but decreased the expression level of the genomic RNAs and CP of CPMMV, without significantly affecting SMV accumulation. The interaction between these viruses needs further investigation.


2021 ◽  
Author(s):  
Kai Zhang ◽  
Yingchao Shen ◽  
Tao Wang ◽  
Yu Wang ◽  
Song Xue ◽  
...  

The leaves of soybean cv. ZheA8901 show various symptoms (necrosis, mosaic and symptomless) when infected with different strains of Soybean mosaic virus (SMV). Based on a proteomic analysis performed with tandem mass tags (TMT), 736 proteins were differentially expressed from soybean samples that showed asymptomatic, mosaic and necrosis symptoms induced by SMV strains SC3, SC7, and SC15, respectively. Among these, GmGSTU13 and APX (ascorbate peroxidase) were only upregulated in mosaic and symptomless leaves, respectively. The protein level of GmGSTU13 determined by Western blot was consistent with TMT analysis, qRT-PCR analysis showed that GmGSTU13 mRNA levels in mosaic plants was 5.26- and 3.75-fold higher than that in necrotic and symptomless plants, respectively. Additionally, the expression of viral coat protein (CP) gene was increased, and serious mosaic symptoms were observed in GmGSTU13-overexpressing plants inoculated with all three SMV strains. These results showed that GmGSTU13 is associated with the development of SMV-induced mosaic symptoms in soybean and that APX is upregulated in symptomless leaves at both the transcriptional and protein levels. In APX gene-silenced soybean plants, the relative expression of the viral CP gene was 1.50, 7.59 and 1.30 times higher than in positive control plants inoculated with the three SMV strains, suggesting that the upregulation of APX may be associated with lack of symptoms in soybean infected with SMV. This work provides a useful dataset for identifying key proteins responsible for symptom development in soybean infected with different SMV strains.


2011 ◽  
Vol 101 (6) ◽  
pp. 750-756 ◽  
Author(s):  
Leslie L. Domier ◽  
Houston A. Hobbs ◽  
Nancy K. McCoppin ◽  
Charles R. Bowen ◽  
Todd A. Steinlage ◽  
...  

Infection of soybean plants with Soybean mosaic virus (SMV), which is transmitted by aphids and through seed, can cause significant reductions in seed production and quality. Because seedborne infections are the primary sources of inoculum for SMV infections in North America, host-plant resistance to seed transmission can limit the pool of plants that can serve as sources of inoculum. To examine the inheritance of SMV seed transmission in soybean, crosses were made between plant introductions (PIs) with high (PI88799), moderate (PI60279), and low (PI548391) rates of transmission of SMV through seed. In four F2 populations, SMV seed transmission segregated as if conditioned by two or more genes. Consequently, a recombinant inbred line population was derived from a cross between PIs 88799 and 548391 and evaluated for segregation of SMV seed transmission, seed coat mottling, and simple sequence repeat markers. Chromosomal regions on linkage groups C1 and C2 were significantly associated with both transmission of isolate SMV 413 through seed and SMV-induced seed coat mottling, and explained ≈42.8 and 46.4% of the variability in these two traits, respectively. Chromosomal regions associated with seed transmission and seed coat mottling contained homologues of Arabidopsis genes DCL3 and RDR6, which encode enzymes involved in RNA-mediated transcriptional and posttranscriptional gene silencing.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1333-1336 ◽  
Author(s):  
H. A. Hobbs ◽  
G. L. Hartman ◽  
Y. Wang ◽  
C. B. Hill ◽  
R. L. Bernard ◽  
...  

Soybean seed coat mottling often has been a problematic symptom for soybean growers and the soybean industry. The percentages of seed in eight soybean lines with seed coat mottling were evaluated at harvest after inoculating plants during the growing season with Bean pod mottle virus (BPMV), Soybean mosaic virus (SMV), and both viruses inside an insect-proof cage in the field. Results from experiments conducted over 2 years indicated that plants infected with BPMV and SMV, alone or in combination, produced seed coat mottling, whereas noninoculated plants produced little or no mottled seed. BPMV and SMV inoculated on the same plants did not always result in higher percentages of mottled seed compared with BPMV or SMV alone. There was significant virus, line, and virus-line interaction for seed coat mottling. The non-seed-coat-mottling gene (Im) in Williams isoline L77-5632 provided limited, if any, protection against mottling caused by SMV and none against BPMV. The Peanut mottle virus resistance gene Rpv1 in Williams isoline L85-2308 did not give any protection against mottling caused by SMV, whereas the SMV resistance gene Rsv1 in Williams isoline L78-379 and the resistance gene or genes in the small-seeded line L97-946 gave high levels of protection against mottling caused by SMV. The correlations (r = 0.77 for year 2000 and r = 0.89 for year 2001) between virus infection of the parent plant and seed coat mottling were significant (P = 0.01), indicating that virus infection of plants caused seed coat mottling.


2021 ◽  
Author(s):  
Yongliang Hu ◽  
Yuqin Chen ◽  
Xiaoxia Su ◽  
Jiawei Huang ◽  
Hongxing Yin ◽  
...  

Abstract The present study reports observation of a field chilli pepper disease consisting of a co-infection with two potyviruses: Wild tomato mosaic virus Dehong isolate (WTMV-Dh) and Chili veinal mottle virus Dehong isolate (ChiVMV-Dh). We obtained the complete genome sequences of these two viruses by NGS sequencing. The WTMV-Dh is 9,598 nucleotides (nt) in length and encodes a complete polyprotein of 3,075 amino acids (aa). The polyprotein of WTMV-Dh shares 76.1–82.6% nt and 85.3–89.5% aa identities with the other three WTMV isolates reported previously. The ChiVMV-Dh is 9688 nt in length and encodes a complete polyprotein with 3, 089 aa. The polyprotein of ChiVMV-Dh shares 80.8–92.2% nt and 85.3–95.6% aa identities with the other ChiVMV isolates reported previously. Following phylogenetic analysis based on the polyprotein sequences of other potyviruses, WTMV-Dh clustered with the Vietnam strain WTMV-Laichau while ChiVMV-Dh clustered with several ChiVMV Sichuan isolates. Evaluation of the recombination events within the WTMV and ChiVMV subgroups indicated that some putative recombination events occurred in critical regions. These regions include the N-terminal of HC-Pro and P1 region of WTMV-Dh, CP and the P3 to CI region of ChiVMV-Dh, which may be new evidence of adaptive evolution of potyviruses.


Sign in / Sign up

Export Citation Format

Share Document