scholarly journals Sustained experimental activation of FGF8/ERK in the developing chicken spinal cord reproducibly models early events in ERK-mediated tumorigenesis

2021 ◽  
Author(s):  
Axelle Wilmerding ◽  
Lauranne Bouteille ◽  
Nathalie Caruso ◽  
Ghislain Bidaut ◽  
Heather Corbett Etchevers ◽  
...  

Most human cancers demonstrate activated MAPK/ERK pathway signaling as a key tumor initiation step, but the immediate steps of further oncogenic progression are poorly understood due to a lack of appropriate models. Spinal cord differentiation follows caudal elongation in vertebrate embryos; both processes are regulated by a FGF8 gradient highest in neuromesodermal progenitors (NMP), where kinase effectors ERK1/2 maintain an undifferentiated state. FGF8/ERK signal attenuation is necessary for NMPs to progress to differentiation. We show that sustained ERK1/2 activity, using a constitutively active form of the kinase MEK1 (MEK1ca) in the chicken embryo, reproducibly provokes neopasia in the developing spinal cord. Transcriptomic data show that neoplasia not only relies on the maintenance of NMP gene expression, and the inhibition of genes expressed in the differentiating spinal cord, but also on a profound change in the transcriptional signature of the spinal cord cells leading to a complete loss of cell-type identity. MEK1ca expression in the developing spinal cord of the chicken embryo is therefore a tractable in vivo model to identify the critical factors fostering malignancy in ERK-induced tumorigenesis.

2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2016 ◽  
Vol 50 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Jacek M. Kwiecien ◽  
Bozena Jarosz ◽  
Wendy Oakden ◽  
Michal Klapec ◽  
Greg J. Stanisz ◽  
...  

Development ◽  
1975 ◽  
Vol 33 (2) ◽  
pp. 403-417
Author(s):  
Brian P. Hayes ◽  
Alan Roberts

The distribution of intercellular junctions, other than synapses and their precursors, has beendescribed in the developing spinal cord of Xenopus laevis between the neurula andfree swimming tadpole stages. At the neurocoel, ventricular cells are joined in the apical contactzone by a sequence of junctions which usually has one or more intermediate junctions but often also includes close appositions, gap junctions and desmosomes. This apical complex is more diverse than that reported in other vertebrate embryos and between ependymal cells in the adult central nervous system. Gap junctions are also found between ventricular cells and their processes near the external cord surface. However, no other special junctions occur in this location under the basementlamella which surrounds the cord. Punctate intermediate junctions are generally distributed between undifferentiated and differentiating cells and their processes but were not found in neuropil after stage 28. These results are discussed in relation to cell movements during neural differentiation, possible effects on the freedom of movement of ions and molecules through extracellular pathways in the embryo, and possible intercytoplasmic pathways via gap junctions which may be responsible for the physiologically observed electrical coupling between neural tube cells.


2019 ◽  
Author(s):  
Abdulmajeed Fahad Alrefaei ◽  
Andrea E. Münsterberg ◽  
Grant N. Wheeler

AbstractWnt/FZD signalling activity is required for spinal cord development, including the dorsal-ventral patterning of the neural tube, where it affects proliferation and specification of neurons. Wnt ligands initiate canonical, β-catenin-dependent, signaling by binding to Frizzled receptors. However, in many developmental contexts the cognate FZD receptor for a particular Wnt ligand remains to be identified. Here, we characterized FZD10 expression in the dorsal neural tube where it overlaps with both Wnt1 and Wnt3a, as well as markers of dorsal progenitors and interneurons. We show FZD10 expression is sensitive to Wnt1, but not Wnt3a expression, and FZD10 plays a role in neural tube patterning. Knockdown approaches show that Wnt1 induced ventral expansion of dorsal neural markes, Pax6 and Pax7, requires FZD10. In contrast, Wnt3a induced dorsalization of the neural tube is not affected by FZD10 knockdown. Gain of function experiments show that FZD10 is not sufficient on its own to mediate Wnt1 activity in vivo. Indeed excess FZD10 inhibits the dorsalizing activity of Wnt1. However, addition of the Lrp6 co-receptor dramatically enhances the Wnt1/FZD10 mediated activation of dorsal markers. This suggests that the mechanism by which Wnt1 regulates proliferation and patterning in the neural tube requires both FZD10 and Lrp6.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2796-2796 ◽  
Author(s):  
Solène Evrard ◽  
Micheline Tulliez ◽  
Eva Zetterberg ◽  
Jan Palmblad ◽  
William Vainchenker ◽  
...  

Abstract In Primary Myelofibrosis, several lines of evidence suggest that pleiotropic cytokine TGF-β1, released by clonal proliferation of pathological megakaryocytes and/or monocytes, plays a prominent role in reticulin fibers deposition. This cytokine is synthesized as a biologically inactive molecule that needs to be activated in order to trigger biological responses. However, the mechanisms involved in local TGF-β1 activation within the hematopoietic environment remain unclear. Since TGF-β1 and thrombospondin-1 (TSP-1) are synthesized and stored within the same organelles in megakaryocytes, one can speculate that the abnormal release of both molecules leads to pathological local TGF-β1 activation that becomes ultimately responsible of fibrosis development in the vicinity of these cells. To investigate the role of TSP-1 in local TGF-β1 activation, we used the TPOhigh murine model of bone marrow (BM) fibrosis. BM cells from wild-type (WT) or Tsp-1-null male littermates were infected with a retrovirus encoding the murine TPO protein and engrafted into lethally irradiated WT or Tsp-1-null female hosts, respectively, leading to the following engraftment combinations, WT/WT (WT TPOhigh mice, n=21) and Tsp-1-null/Tsp-1-null (Tsp-1-null TPOhigh mice, n=17). Lethally-irradiated hosts were engrafted with 4 to 8 × 106 cells in 3 independent experiments. Peripheral blood was analyzed every 4 weeks during 3 months and mice were killed for histological analysis at week 8 and 12 post-engraftment. The magnitude of plasma TPO level increase was comparable regardless of the TPOhigh mice groups. Chimerism levels, analyzed in recipients by FISH on the presence of the donor Y chromosome in whole nucleated BM cells, were more than 90% in either WT or Tsp-1-null TPOhigh mice. We report here that all TPOhigh mice developed a similar myeloproliferative syndrome associated with TGF-β1 overproduction. Surprisingly, we were able to detect the active form of TGF-β1 in BM and spleen extracellular fluids in all mice, including Tsp-1-null TPOhigh mice, suggesting that alternative mechanisms are mainly responsible for local TGF-β1 activation in this murine model of myelofibrosis. We then confirmed that Tsp-1-null platelets are able to activate TGF-β1 in vitro in response to thrombin. As predicted by the detection of the active form of TGF-β1, Tsp-1-null TPOhigh mice developed BM and spleen fibrosis which appears, intriguingly, to be of a greater grade than the one displayed by WT TPOhigh mice. Since TSP-1 is a potent inhibitor of angiogenesis, we investigate whether this increased fibrosis could be correlated with an augmentation of neoangiogenesis. The microvascular density (MVD) in control Tsp-1-null BM were higher than in control WT one (10±4.7 vs 0.6±0.2; p<0.001), as expected. However, MVD displayed by Tsp-1-null TPOhigh mice (8.3±4.4) did not rise above the one displayed by control Tsp-1-null mice and was similar to MVD observed in WT TPOhigh mice (5.7±2.9). Thus, the increase of myelofibrosis in Tsp-1-null TPOhigh mice cannot be explained by an augmentation of neoangiogenesis. Since TGF-β1 levels were similar in both TPOhigh groups, we hypothesized that this increase could be related to an enhanced TGF-β1-mediated response by Tsp-1-null BM fibroblasts. Indeed, we could show that Tsp-1 deficiency is associated with sustained phospho-Smad3 levels and a 10-fold increase in collagen III transcription level by BM fibroblasts in response to TGF-β1. Together, our results show that TSP-1 is not the major activator of TGF-β1 in this in vivo model of myelofibrosis; suggest that other mechanisms are involved in this activation; shed light on a possible new mechanism of TGF-β1 regulation by one of its own activator.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hai Liu ◽  
Edward M. Schwarz ◽  
Chao Xie

Mesenchymal stem cell (MSC) transplantation has shown tremendous promise as a therapy for repair of various tissues of the musculoskeletal, vascular, and central nervous systems. Based on this success, recent research in this field has focused on complex tissue damage, such as that which occurs from traumatic spinal cord injury (TSCI). As the critical event for successful exogenous, MSC therapy is their migration to the injury site, which allows for their anti-inflammatory and morphogenic effects on fracture healing, neuronal regeneration, and functional recover. Thus, there is a need for a cost-effective in vivo model that can faithfully recapitulate the salient features of the injury, therapy, and recovery. To address this, we review the recent advances in exogenous MSC therapy for TSCI and traumatic vertebral fracture repair and the existing challenges regarding their translational applications. We also describe a novel murine model designed to take advantage of multidisciplinary collaborations between musculoskeletal and neuroscience researchers, which is needed to establish an efficacious MSC therapy for TSCI.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 598-598
Author(s):  
Akos G. Czibere ◽  
Julia Fröbel ◽  
Sonja Hartwig ◽  
Ron-Patrick Cadeddu ◽  
Matthias Wilk ◽  
...  

Abstract Abstract 598 Thrombocytopenia is prevalent in up to 65% of patients with myelodysplastic syndrome (MDS) at the time of diagnosis and thrombocytopenic hemorrhage is a significant clinical problem that is often complicated by platelet aggregation defects. Little is known about the pathophysiology of this insufficient platelet function. Here, we delineate a reduced expression of critical platelet aggregation-related proteins by analyzing the platelet proteome of 7 patients with MDS and 7 normal donors. Patients' median platelet count was 60 × 10E9/L (range 37–109 × 109/L) and none of the patients examined had received prior anticoagulant treatment, chemotherapy or platelet transfusions. Differential 2-dimensional in-gel electrophoresis coupled with a time-of-flight Ultraflex-Tof/Tof mass spectrometer enabled the discovery of 120 differential protein spots. Among these, we identified a total of 35 proteins including 26 proteins that are integral part of the integrin aIIbβ3 receptor (GPIIb/IIIa, Fibrinogen receptor) signaling such as Talin-1 and Vinculin. In resting platelets the integrin aIIbβ3 receptor exhibits a low-affinity (inactive) state which is shifted to a high-affinity (active) state following inside-out activation. Talin-1 expression has been shown to be essential for this inside-out activation of the integrin aIIbβ3 receptor and consecutive platelet aggregation in an in-vivo model. We hypothesized that the reduced expression of Talin-1 and its co-factor Vinculin may inhibit activation of the integrin aIIbβ3 receptor and thereby contribute to the platelet aggregation defect seen in patients with MDS. Therefore, we performed further functional studies on integrin aIIbβ3 receptor activation and platelet spreading/aggregation with platelets derived from an independent cohort of 7 patients with MDS and 7 normal donors. In this new cohort, patients' median platelet count was 94 × 109/L (range 60–120 × 109/L) and again all patients had never received prior platelet transfusions or anti-coagulant treatment. When we looked at the surface expression of the integrin aIIbβ3 receptor on resting platelets by means of flow-cytometry, we did not detect any differences between platelets from patients with MDS and normal donors. Then, we activated platelets from normal donors and patients with MDS with 0.01U/μl and 0.001U/μl thrombin and measured binding of PAC-1, which is highly specific for detection of the active form of the integrin aIIbβ3 receptor. Here, we found a significantly lower shift from the inactive to the active form in platelets derived from patients with MDS dropping from 92.15% and 91.46% in normal donors to 41.97% and 48.45% (p = 0.01 and p = 0.006), respectively. We confirmed this suggested lack of adhesion and aggregation capacities in MDS platelets by confocal microscopy and single platelet imaging of washed platelets stimulated with 0.01U/μl thrombin which were adhered to immobilized fibrinogen. Consecutive platelet aggregation assays also revealed an insufficient response to stimuli like Collagen and ADP. Our findings provide for the first-time insight into the molecular pathology of defective platelet aggregation in MDS and suggest a mechanism of defective inside-out signaling caused by a reduced expression of proteins required for integrin aIIbβ3 receptor activation. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Valentin Voillet ◽  
Trisha R Berger ◽  
Kelly M McKenna ◽  
Kelly G Paulson ◽  
Kimberly S Smythe ◽  
...  

Despite recent therapeutic progress, advanced melanoma remains lethal for many patients. The composition of the immune tumor microenvironment (TME) has decisive impacts on therapy response and disease outcome. High dimensional analyses of patient samples can reveal the composition and heterogeneity of the immune TME. In particular, macrophages are known for their cancer-supportive role, but the underlying mechanisms are incompletely understood, and experimental in vivo systems are needed to test the functional properties of these cells. We characterized a humanized mouse model, reconstituted with a human immune system and a human melanoma, in which: (1) human macrophages support metastatic spread of the tumor; and (2) tumor-infiltrating macrophages have a specific transcriptional signature that faithfully represents the transcriptome of macrophages from patient melanoma samples and is associated with shorter survival. This model complements patient sample analyses, enabling the elucidation of fundamental principles in melanoma biology, and the development and evaluation of candidate therapies.


Author(s):  
Rosa M. Gomez ◽  
Kemel Ghotme ◽  
Jackeline J. Nino ◽  
Maria Quiroz-Padilla ◽  
Daniela Vargas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document