scholarly journals Stem cell-free therapy for glaucoma to preserve vision

2021 ◽  
Author(s):  
Ajay Kumar ◽  
Siqi Xiong ◽  
Minwen Zhou ◽  
Wen Chen ◽  
Enzhi Yang ◽  
...  

Glaucoma is the leading cause of irreversible blindness with trabecular meshwork (TM) dysfunction resulting in elevated intraocular pressure and retinal ganglion cell (RGC) damage leading to vision loss. In this study, we discovered that secretome, derived from human TM stem cells, via minimal invasive periocular injection, can reduce intraocular pressure, restore TM homeostasis, protect RGC, and restore RGC function in both steroid-induced and genetic myocilin mutant mouse models of glaucoma. The secretome upregulated the COX2-PGE2 axis via mitochondrial TMEM177 and led to activation of endogenous stem cells and TM regeneration. Inhibition of COX2 abolished the protective effect of secretome on TM cells. Secretome treatment also enhanced RGC survival and function. Proteomic analysis revealed that the secretome is enriched with proteins involved in extracellular matrix modulation leading to the remodeling of TM to restore homeostasis. This study highlights the feasibility of stem cell-free therapy for glaucoma with minimal invasive administration and the involvement of multiple novel pathways for a cumulative regenerative effect on the TM to protect RGC.

Author(s):  
Shadi Rajabi ◽  
Craig A. Simmons ◽  
C. Ross Ethier

Glaucoma, a chronic optic neuropathy, is the second most common cause of blindness, affecting 67 million people worldwide. The damage in glaucoma occurs at the optic nerve head (ONH), where the axons of the retinal ganglion cells leave the eye posteriorly. Glaucoma is frequently associated with elevated intraocular pressure (IOP), and visual field loss can be prevented by significant lowering of IOP. Hence, the role of pressure in glaucoma is important. Unfortunately, the mechanism by which pressure leads to vision loss in glaucoma is very poorly understood.


Microscopy ◽  
2021 ◽  
Author(s):  
Nobuyuki Koike ◽  
Jun Sugimoto ◽  
Motonori Okabe ◽  
Kenichi Arai ◽  
Makiko Nogami ◽  
...  

Abstract Amnion membrane studies related to miscarriage have been conducted in the field of obstetrics and gynecology. However, the distribution of stem cells within the amnion and the differences in the properties of each type of stem cells are still not well understood. We address this gap in knowledge in the present study where we morphologically classified the amnion membrane, and we clarified the distribution of stem cells here to identify functionally different amniotic membrane–derived stem cells. The amnion can be divided into a site that is continuous with the umbilical cord (region A), a site that adheres to the placenta (region B), and a site that is located opposite the placenta (region C). We found that human amnion epithelial stem cells (HAECs) that strongly express stem cell markers were abundant in area A. HAEC not only expressesed stem cell-specific surface markers TRA-1-60, Tra-1-81, SSEA4, SSEA3, but was also OCT-3/4 positive and had alkaline phosphatase activity. Human amniotic mesenchymal stem cells expressed KLF-A, OCTA, Oct3/4, c-MYC and Sox2 which is transcription factor. Especially, in regions A and B they have expressed CD73, and the higher expression of BCRP which is drug excretion transporter protein than the other parts. These data suggest that different types of stem cells may have existed in different area. The understanding the relation with characteristics of the stem cells in each area and function would allow for the efficient harvest of suitable HAE and HAM stem cells as using tool for regenerative medicine.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Evelien Nollet ◽  
Dina De Bock ◽  
Inez R Rodrigus ◽  
Vicky Y Hoymans ◽  
Christiaan J Vrints ◽  
...  

Purpose: Despite the observed therapeutic benefits of autologous bone marrow (BM)-derived stem cell transplantation in patients with ischemic heart disease, the efficacy of this approach could be hampered by BM dysfunction. We investigated whether BM cellularity and function is affected by coronary artery disease (CAD). Methods & Results: BM samples were obtained peri-operatively from 26 CAD patients, undergoing coronary artery bypass surgery (LVEF 54±16%), and 6 controls, undergoing mitral valve surgery (LVEF 50±12%; age 59±10yrs). CAD patients were stratified according to their Syntax score (mild ≤15, age 61±10yrs; and moderate CAD >15, age 63±8yrs; stratification based on median score), which is used to assess complexity of coronary lesions. In vitro functional analysis of isolated BM-derived mononuclear cells (BM-MNC) revealed a significant impairment of migratory capacity towards SDF-1α and VEGF in patients with moderate CAD (25.71±7.3%) compared to controls (33.82±8.3%; p=0.042) and patients with mild CAD (34.76±7.8%; p=0.007). Hematopoetic stem cells (HSC, CD45dimCD34+SSClow) were reduced in patients with moderate CAD (8178±5530 HSC/106 BM-MNC; p=0.014) and mild CAD (10655±5489 HSC/106 BM-MNC; p=0.054) compared to controls (16220±6126 HSC/106 BM-MNC). An inverse correlation was found between age and the number of granulocyte-macrophage colony forming units (r= −0.408; p=0.048), burst forming units erythroid (r= −0.458; p=0.028) and HSC (r=-0.356; p=0.046). Furthermore, our data revealed a relation between reduced renal function (CKD-EPI eGFR, 81.2±19 ml/min) and reduced number of HSC (r=0.480; p=0.011) and endothelial progenitor cells (EPC, CD45dimCD34+KDR+; r=0.522; p=0.008). Conclusions: Migratory capacity of BM-MNC and the number of HSC are reduced in patients with CAD, which is more pronounced in more complex CAD. In addition, age and renal function emerge as relevant determinants on BM function and stem cell populations. Therefore, these factors should be taken into account when assessing benefits of autologous stem cell therapy.


Author(s):  
C. G. Olesen ◽  
I. Tertinegg ◽  
A. Eilaghi ◽  
G. W. Brodland ◽  
C. Horst ◽  
...  

Glaucoma is a common ocular disease that causes irreversible loss of vision. Elevated intraocular pressure (IOP) is the primary risk factor for developing glaucoma. It is believed that increased IOP causes mechanical strain on the glial cells that support the retinal ganglion cell axons and thereby causes ganglion cell apoptosis [1,2]. This damage occurs in the optic nerve head (ONH) region of the eye, and is important for understanding ONH biomechanics.


2013 ◽  
Vol 45 (23) ◽  
pp. 1123-1135 ◽  
Author(s):  
David A. Brafman

Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.


2020 ◽  
Author(s):  
Mark A. Skylar-Scott ◽  
Jeremy Y. Huang ◽  
Aric Lu ◽  
Alex H.M. Ng ◽  
Tomoya Duenki ◽  
...  

AbstractSimultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types offers a pathway to achieving tailorable cellular complexity, patterned architecture, and function in engineered human organoids and tissues. Recent transcription factor (TF) overexpression protocols typically produce only one cell type of interest rather than the multitude of cell types and structural organization found in native human tissues. Here, we report an orthogonal differentiation platform for genomically programming stem cells, organoids and bioprinted tissues with controlled composition and organization. To demonstrate this platform, we orthogonally differentiated endothelial cells and neurons from hiPSCs in a one-pot system containing neural stem cell-specifying media. By aggregating inducible-TF and wildtype hiPSCs into pooled and multicore-shell embryoid bodies, we produced vascularized and patterned cortical organoids within days. Using multimaterial 3D bioprinting, we patterned 3D neural tissues from densely cellular, matrix-free stem cell inks that were orthogonally differentiated on demand into distinct layered regions composed of neural stem cells, endothelium, and neurons, respectively. Given the high proliferative capacity and patient-specificity of hiPSCs, our platform provides a facile route for programming cells and multicellular tissues for drug screening and therapeutic applications.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 716-716
Author(s):  
Joanne C. Mountford ◽  
Diane Gilmour ◽  
Susan M. Graham ◽  
Niove E. Jordanides ◽  
Siobhan McMillan ◽  
...  

Abstract We have previously described a population of deeply, but reversibly, quiescent stem cells (qSC) found in patients with chronic phase (CP) CML at diagnosis. In vitro studies have proven this population to be highly insensitive to imatinib mesylate (IM; Gleevec, STI571) induced killing, and more worryingly shown that qSC are accumulated after CML CD34+ cells are treated with IM. As it is likely that CML qSC closely resemble normal HSC, we hypothesise that they too may express the stem cell-associated ABCG2 and have therefore examined the expression and function of this drug efflux pump on CML cells. In agreement with other studies we show the interaction between ABCG2 and IM. Using ABCG2 over-expressing cells (AML6.2 and HL60-BCRP) we found that ≥0.5μM IM reduced efflux of the ABCG2 substrate BODIPY-Prazosin by a similar degree as the inhibitor fumitremorgin C (FTC; 10μM). We have now examined expression and function of ABCG2 on primary CML cells taken from patients in chronic phase (CP) and prior to any treatment. Quantitative Taqman analysis of 8 CD34+ enriched (≥90%+) CML samples revealed that the level of expression is 2.46 fold higher than that in normal mobilised CD34+ cells (n=8 CML, n=4 normal). In addition, we undertook microarray analysis of normal or CML CP CD34+ cells fractionated according to cell cycle using Hoechst-Pyronin (G0, G1 and G2/S/M). These analyses (n=3 normal, n=5 CML) show that at all stages of the cycle CML cells express more ABCG2 than normal cells and that G0 CML cells express 2.48 fold more than those in G1 , confirming both the over-expression in CML and relationship to the most primitive subset of cells. Using the antibody BXP21 we found that 8 of 9 samples contain ABCG2+ve cells (5 of 9 ≥60% of cells ABCG2+). We also examined the function of ABCG2 on CML CD34+ cells by performing efflux assays, 4 of 6 showed efflux that was inhibited by 10μM FTC or ≥0.5μM IM, and this efflux capacity correlated with BXP21 staining. We therefore considered whether the combination of IM therapy and ABCG2 inhibition would overcome the accumulation of CML qSCs we have previously reported after treatment with IM. Using CFSE to track cell division we treated CD34+ enriched CML samples with 5μM IM +/− FTC or with 10μM FTC alone for 3 days. In comparison to untreated controls 5μM IM reduced the total number of cells to 31.9±9.2 % and the number of CD34+ cells to 43.2±17.6%. However, the non-cycling qSC significantly increased to 318±75.8% of control. In contrast, the ABCG2 inhibitor FTC did not effect a reduction in total cells (99.5±11.9%) but gave a significant reduction of CD34+ cells (58.6±8.4%; p=0.02) and no accumulation of qSC (104.6±33.8%) when used alone. We saw no cumulative effect when IM and FTC were given concurrently. These data suggest strongly that FTC may be used to deplete CD34+ ‘stem cells’ from CML, as the total cell number is unchanged it is likely that this depletion is by the induction of differentiation. We propose that the expression of ABCG2 may be clinically significant in CP CML and that inhibition of this pump may result in a ‘stem cell targeted therapy’ that could be followed by IM treatment to reduce the tumor load. Such reduction of CML stem cells would result in elimination of minimal residual disease and effect a lasting remission.


2015 ◽  
Vol 117 ◽  
pp. 136
Author(s):  
Jianzhong Ji ◽  
Peter Chang ◽  
Mark E. Pennesi ◽  
Zhuo Yang ◽  
Jian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document