scholarly journals Contractile ring constriction and septation in fission yeast are integrated mutually stabilizing processes

2021 ◽  
Author(s):  
Sathish Thiyagarajan ◽  
Zachary A McDargh ◽  
Shuyuan Wang ◽  
Ben O'Shaughnessy

In common with other cellular machineries, the actomyosin contractile ring that divides cells during cytokinesis does not operate in isolation. Contractile rings in animal cells interact with contiguous actomyosin cortex, while ring constriction in many cell-walled organisms couples tightly to cell wall growth. In fission yeast, a septum grows in the wake of the constricting ring, ensuring cytokinesis leaves two daughter cells fully enclosed by cell wall. Here we mathematical modeled the integrated constriction-septation system in fission yeast, with a kinetic growth model evolving the 3D septum shape coupled to a molecularly explicit simulation of the contractile ring highly constrained by experimental data. Simulations revealed influences in both directions, stabilizing the ring-septum system as a whole. By providing a smooth circular anchoring surface for the ring, the inner septum leading edge stabilized ring organization and tension production; by mechanically regulating septum circularity and in-plane growth, ring tension stabilized septum growth and shape. Genetic or pharmacological perturbation of either subsystem destabilized this delicate balance, precipitating uncontrolled positive feedback with disastrous morphological and functional consequences. Thus, high curvature septum irregularities triggered bridging instabilities, in which contractile ring segments became unanchored. Bridging abolished the local tension-mediated septum shape regulation, exacerbating the irregularity in a mutually destabilizing runaway process. Our model explains a number of previously mysterious experimental observations, including unanchoring of ring segments observed in cells with mutations in the septum-growing β-glucan synthases, and irregular septa in cells with mutations in the contractile ring myosin-II Myo2. Thus, the contractile ring and cell wall growth cellular machineries operate as a single integrated system, whose stability relies on mutual regulation by the two subsystems.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi-Jen Sun ◽  
Fan Bai ◽  
An-Chi Luo ◽  
Xiang-Yu Zhuang ◽  
Tsai-Shun Lin ◽  
...  

AbstractThe dynamic assembly of the cell wall is key to the maintenance of cell shape during bacterial growth. Here, we present a method for the analysis of Escherichia coli cell wall growth at high spatial and temporal resolution, which is achieved by tracing the movement of fluorescently labeled cell wall-anchored flagellar motors. Using this method, we clearly identify the active and inert zones of cell wall growth during bacterial elongation. Within the active zone, the insertion of newly synthesized peptidoglycan occurs homogeneously in the axial direction without twisting of the cell body. Based on the measured parameters, we formulate a Bernoulli shift map model to predict the partitioning of cell wall-anchored proteins following cell division.


2008 ◽  
Vol 183 (6) ◽  
pp. 979-988 ◽  
Author(s):  
Yinyi Huang ◽  
Hongyan Yan ◽  
Mohan K. Balasubramanian

Cytokinesis in many eukaryotes depends on the function of an actomyosin contractile ring. The mechanisms regulating assembly and positioning of this ring are not fully understood. The fission yeast Schizosaccharomyces pombe divides using an actomyosin ring and is an attractive organism for the study of cytokinesis. Recent studies in S. pombe (Wu, J.Q., V. Sirotkin, D.R. Kovar, M. Lord, C.C. Beltzner, J.R. Kuhn, and T.D. Pollard. 2006. J. Cell Biol. 174:391–402; Vavylonis, D., J.Q. Wu, S. Hao, B. O'Shaughnessy, and T.D. Pollard. 2008. Science. 319:97–100) have suggested that the assembly of the actomyosin ring is initiated from a series of cortical nodes containing several components of this ring. These studies have proposed that actomyosin interactions bring together the cortical nodes to form a compacted ring structure. In this study, we test this model in cells that are unable to assemble cortical nodes. Although the cortical nodes play a role in the timing of ring assembly, we find that they are dispensable for the assembly of orthogonal actomyosin rings. Thus, a mechanism that is independent of cortical nodes is sufficient for the assembly of normal actomyosin rings.


2017 ◽  
Vol 114 (35) ◽  
pp. E7236-E7244 ◽  
Author(s):  
Luther W. Pollard ◽  
Carol S. Bookwalter ◽  
Qing Tang ◽  
Elena B. Krementsova ◽  
Kathleen M. Trybus ◽  
...  

Studies in fission yeast Schizosaccharomyces pombe have provided the basis for the most advanced models of the dynamics of the cytokinetic contractile ring. Myo2, a class-II myosin, is the major source of tension in the contractile ring, but how Myo2 is anchored and regulated to produce force is poorly understood. To enable more detailed biochemical/biophysical studies, Myo2 was expressed in the baculovirus/Sf9 insect cell system with its two native light chains, Rlc1 and Cdc4. Milligram yields of soluble, unphosphorylated Myo2 were obtained that exhibited high actin-activated ATPase activity and in vitro actin filament motility. The fission yeast specific chaperone Rng3 was thus not required for expression or activity. In contrast to nonmuscle myosins from animal cells that require phosphorylation of the regulatory light chain for activation, phosphorylation of Rlc1 markedly reduced the affinity of Myo2 for actin. Another unusual feature of Myo2 was that, unlike class-II myosins, which generally form bipolar filamentous structures, Myo2 showed no inclination to self-assemble at approximately physiological salt concentrations, as analyzed by sedimentation velocity ultracentrifugation. This lack of assembly supports the hypothesis that clusters of Myo2 depend on interactions at the cell cortex in structural units called nodes for force production during cytokinesis.


1997 ◽  
Vol 110 (20) ◽  
pp. 2547-2555 ◽  
Author(s):  
M. Arellano ◽  
A. Duran ◽  
P. Perez

The Schizosaccharomyces pombe rho1p GTPase directly activates the (1–3) beta-D-glucan synthase and participates in the regulation of cell wall growth and morphogenesis in this fission yeast. Indirect immunofluorescence experiments using rho1p tagged with hemagglutinin have revealed that rho1p was located at the growing tips during interphase and at the septum prior to cytokinesis, localising to the same areas as actin patches. In S. pombe cdc10-129 mutant cells, arrested in G1, HA-rho1p accumulates at one tip whereas in cdc25-22 mutants, arrested in G2, HA-rho1p accumulates at both tips. In tea1-1 and tea2-1 cdc11-119 mutant cells, HA-rho1p is localised to the new growing tips. Overexpression of different rho1 mutant alleles caused different effects on cortical actin patch distribution, (1–3) beta-D-glucan synthase activation, and sensitivity to cell wall specific antifungal drugs. These results indicate that multiple cellular components are activated by rho1p. Overexpression of the dominant negative rho1T20N allele was lethal as was the rho1+ deletion. Moreover, when rho1+ expression was repressed in actively growing S. pombe, cells died in about 10 to 12 hours. Under these conditions, normal cell morphology was maintained but the level of (1–3) beta-D-glucan synthase activity decreased and the actin patches disappeared. Most cells lysed after cytokinesis during the process of separation, and lysis was not prevented by an osmotic stabiliser. We conclude that rho1p localisation is restricted to growth areas and regulated during the cell cycle and that rho1p is involved in cell wall growth and actin cytoskeleton organisation in S. pombe.


2012 ◽  
Vol 23 (13) ◽  
pp. 2433-2444 ◽  
Author(s):  
Luther W. Pollard ◽  
Masayuki Onishi ◽  
John R. Pringle ◽  
Matthew Lord

Cell morphogenesis is a complex process that relies on a diverse array of proteins and pathways. We have identified a transglutaminase-like protein (Cyk3p) that functions in fission yeast morphogenesis. The phenotype of a cyk3 knockout strain indicates a primary role for Cyk3p in cytokinesis. Correspondingly, Cyk3p localizes both to the actomyosin contractile ring and the division septum, promoting ring constriction, septation, and subsequent cell separation following ring disassembly. In addition, Cyk3p localizes to polarized growth sites and plays a role in cell shape determination, and it also appears to contribute to cell integrity during stationary phase, given its accumulation as dynamic puncta at the cortex of such cells. Our results and the conservation of Cyk3p across fungi point to a role in cell wall synthesis and remodeling. Cyk3p possesses a transglutaminase domain that is essential for function, even though it lacks the catalytic active site. In a wider sense, our work illustrates the physiological importance of inactive members of the transglutaminase family, which are found throughout eukaryotes. We suggest that the proposed evolution of animal transglutaminase cross-linking activity from ancestral bacterial thiol proteases was accompanied by the emergence of a subclass whose function does not depend on enzymatic activity.


Sign in / Sign up

Export Citation Format

Share Document