scholarly journals Intracellular phase separation of globular proteins facilitated by short cationic peptides

2021 ◽  
Author(s):  
Vivian Yeong ◽  
Jou-wen Wang ◽  
Justin M Horn ◽  
Allie C Obermeyer

Phase separation provides intracellular organization and underlies a variety of cellular processes. These biomolecular condensates exhibit distinct physical and material properties. Current strategies for engineering condensate formation include using intrinsically disordered domains and altering protein surface charge by chemical supercharging or site-specific mutagenesis. We add to this toolbox by designing short, highly charged peptide tags that provide several key advantages for engineering protein phase separation. Herein, we report the use of short cationic peptide tags for sequestration of proteins of interest into bacterial condensates. Using a panel of GFP variants, we demonstrate how cationic tag and globular domain charge contribute to intracellular phase separation in E. coli and observe that the tag can affect condensate disassembly at a given net charge near the phase separation boundary. We showcase the broad applicability of these tags by appending them onto enzymes and demonstrating that the sequestered enzymes remain catalytically active.

2018 ◽  
Vol 294 (5) ◽  
pp. 1451-1463 ◽  
Author(s):  
Roubina Tatavosian ◽  
Samantha Kent ◽  
Kyle Brown ◽  
Tingting Yao ◽  
Huy Nguyen Duc ◽  
...  

Polycomb group (PcG) proteins repress master regulators of development and differentiation through organization of chromatin structure. Mutation and dysregulation of PcG genes cause developmental defects and cancer. PcG proteins form condensates in the cell nucleus, and these condensates are the physical sites of PcG-targeted gene silencing via formation of facultative heterochromatin. However, the physiochemical principles underlying the formation of PcG condensates remain unknown, and their determination could shed light on how these condensates compact chromatin. Using fluorescence live-cell imaging, we observed that the Polycomb repressive complex 1 (PRC1) protein chromobox 2 (CBX2), a member of the CBX protein family, undergoes phase separation to form condensates and that the CBX2 condensates exhibit liquid-like properties. Using site-directed mutagenesis, we demonstrated that the conserved residues of CBX2 within the intrinsically disordered region (IDR), which is the region for compaction of chromatin in vitro, promote the condensate formation both in vitro and in vivo. We showed that the CBX2 condensates concentrate DNA and nucleosomes. Using genetic engineering, we report that trimethylation of Lys-27 at histone H3 (H3K27me3), a marker of heterochromatin formation produced by PRC2, had minimal effects on the CBX2 condensate formation. We further demonstrated that the CBX2 condensate formation does not require CBX2–PRC1 subunits; however, the condensate formation of CBX2–PRC1 subunits depends on CBX2, suggesting a mechanism underlying the assembly of CBX2–PRC1 condensates. In summary, our results reveal that PcG condensates assemble through liquid–liquid phase separation (LLPS) and suggest that phase-separated condensates can organize PcG-bound chromatin.


2021 ◽  
Author(s):  
Mike T. Veling ◽  
Dan T. Nguyen ◽  
Nicole N. Thadani ◽  
Michela E. Oster ◽  
Nathan J. Rollins ◽  
...  

ABSTRACTMany organisms can survive extreme conditions and successfully recover to normal life. This extremotolerant behavior has been attributed in part to repetitive, amphipathic, and intrinsically disordered proteins that are upregulated in the protected state. Here, we assemble a library of approximately 300 naturally-occurring and designed extremotolerance-associated proteins to assess their ability to protect human cells from chemically-induced apoptosis. We show that proteins from tardigrades, nematodes, and the Chinese giant salamander are apoptosis protective. Notably, we identify a region of the human ApoE protein with similarity to extremotolerance-associated proteins that also protects against apoptosis. This region mirrors the phase separation behavior seen with such proteins, like the tardigrade protein CAHS2. Moreover, we identify a synthetic protein, DHR81, that shares this combination of elevated phase separation propensity and apoptosis protection. Finally, we demonstrate that driving protective proteins into the condensate state increases apoptosis protection, and highlight the ability for DHR81 condensates to sequester caspase-7. Taken together, this work draws a link between extremotolerance-associated proteins, condensate formation, and human cellular protection.


2019 ◽  
Author(s):  
Jamie A. Greig ◽  
Tu Anh Nguyen ◽  
Michelle Lee ◽  
Alex S. Holehouse ◽  
Ammon E. Posey ◽  
...  

AbstractLow-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine/aspartic-acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine’s guanidinium ion. MCDs can synergise with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behaviour is tuneable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. By contrast, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation, and link the speckle’s dynamic material properties with function in mRNA processing.


2019 ◽  
Vol 116 (33) ◽  
pp. 16326-16331 ◽  
Author(s):  
Florian Heinkel ◽  
Libin Abraham ◽  
Mary Ko ◽  
Joseph Chao ◽  
Horacio Bach ◽  
...  

Phase separation drives numerous cellular processes, ranging from the formation of membrane-less organelles to the cooperative assembly of signaling proteins. Features such as multivalency and intrinsic disorder that enable condensate formation are found not only in cytosolic and nuclear proteins, but also in membrane-associated proteins. The ABC transporter Rv1747, which is important for Mycobacterium tuberculosis (Mtb) growth in infected hosts, has a cytoplasmic regulatory module consisting of 2 phosphothreonine-binding Forkhead-associated domains joined by an intrinsically disordered linker with multiple phospho-acceptor threonines. Here we demonstrate that the regulatory modules of Rv1747 and its homolog in Mycobacterium smegmatis form liquid-like condensates as a function of concentration and phosphorylation. The serine/threonine kinases and sole phosphatase of Mtb tune phosphorylation-enhanced phase separation and differentially colocalize with the resulting condensates. The Rv1747 regulatory module also phase-separates on supported lipid bilayers and forms dynamic foci when expressed heterologously in live yeast and M. smegmatis cells. Consistent with these observations, single-molecule localization microscopy reveals that the endogenous Mtb transporter forms higher-order clusters within the Mycobacterium membrane. Collectively, these data suggest a key role for phase separation in the function of these mycobacterial ABC transporters and their regulation via intracellular signaling.


2018 ◽  
Author(s):  
Roubina Tatavosian ◽  
Samantha Kent ◽  
Kyle Brown ◽  
Tingting Yao ◽  
Huy Nguyen Duc ◽  
...  

AbstractPolycomb group (PcG) proteins are master regulators of development and differentiation. Mutation and dysregulation of PcG genes cause developmental defects and cancer. PcG proteins form condensates in the nucleus of cells and these condensates are the physical sites of PcG-targeted gene silencing. However, the physiochemical principles underlying the PcG condensate formation remain unknown. Here we show that Polycomb repressive complex 1 (PRC1) protein Cbx2, one member of the Cbx family proteins, contains a long stretch of intrinsically disordered region (IDR). Cbx2 undergoes phase separation to form condensates. Cbx2 condensates exhibit liquid-like properties and can concentrate DNA and nucleosomes. We demonstrate that the conserved residues within the IDR promote the condensate formation in vitro and in vivo. We further indicate that H3K27me3 has minimal effects on the Cbx2 condensate formation while depletion of core PRC1 subunits facilitates the condensate formation. Thus, our results reveal that PcG condensates assemble through liquid-liquid phase separation (LLPS) and suggest that PcG-bound chromatin is in part organized through phase-separated condensates.


2021 ◽  
Vol 22 (23) ◽  
pp. 12758
Author(s):  
Katarzyna Sołtys ◽  
Andrzej Ożyhar

Eukaryotic cells are composed of different bio-macromolecules that are divided into compartments called organelles providing optimal microenvironments for many cellular processes. A specific type of organelles is membraneless organelles. They are formed via a process called liquid–liquid phase separation that is driven by weak multivalent interactions between particular bio-macromolecules. In this review, we gather crucial information regarding different classes of transcription regulators with the propensity to undergo liquid–liquid phase separation and stress the role of intrinsically disordered regions in this phenomenon. We also discuss recently developed experimental systems for studying formation and properties of membraneless organelles.


2019 ◽  
Author(s):  
Ye Fu ◽  
Xiaowei Zhuang

AbstractDiverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of m6A-modified mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are crucial for SG formation. Super-resolution imaging further reveals that YTHDF proteins are in a super-saturated state, forming clusters that reside in the periphery of and at the junctions between SG core clusters, and promote SG phase separation by reducing the activation energy barrier and critical size for condensate formation. Our results reveal a new function and mechanistic insights of the m6A-binding YTHDF proteins in regulating phase separation.


2019 ◽  
Author(s):  
Gábor M. Harami ◽  
Zoltán J. Kovács ◽  
Rita Pancsa ◽  
János Pálinkás ◽  
Veronika Baráth ◽  
...  

ABSTRACTBacterial single stranded (ss) DNA-binding proteins (SSB) are essential for the replication and maintenance of the genome. SSBs share a conserved ssDNA-binding domain, a less conserved intrinsically disordered linker (IDL) and a highly conserved C-terminal peptide (CTP) motif that mediates a wide array of protein-protein interactions with DNA-metabolizing proteins. Here we show that the E. coli SSB protein forms liquid-liquid phase separated condensates in cellular-like conditions through multifaceted interactions involving all structural regions of the protein. SSB, ssDNA and SSB-interacting molecules are highly concentrated within the condensates, whereas phase separation is overall regulated by the stoichiometry of SSB and ssDNA. Together with recent results on subcellular SSB localization patterns, our results point to a conserved mechanism by which bacterial cells store a pool of SSB and SSB-interacting proteins. Dynamic phase separation enables rapid mobilization of this protein pool to protect exposed ssDNA and repair genomic loci affected by DNA damage.


2020 ◽  
pp. jbc.RA120.015189
Author(s):  
Isadora A. Oliveira ◽  
Diego Allonso ◽  
Tácio V. A. Fernandes ◽  
Daniela M.S. Lucena ◽  
Gustavo T. Ventura ◽  
...  

Glycoconjugates play a central role in several cellular processes and alteration in their composition is associated with numerous human pathologies. Substrates for cellular glycosylation are synthesized in the hexosamine biosynthetic pathway, which is controlled by the glutamine:fructose-6-phosphate amidotransfera-se (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer; however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in E. coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the expected ordered bi-bi mechanism, and performs the glucosamine-6-phosphate synthesis much more slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerize fructose-6-phosphate into glucose-6-phosphate even in the presence of equimolar amounts of glutamine, which results in unproductive glutamine hydrolysis. Structural analysis of a three-dimensional model of rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in the glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations suggest that this loop is the most flexible portion of the protein, and plays a key role on conformational states of hGFAT2. Thus, our study provides the first comprehensive set of data on the structure, kinetics and mechanics of hGFAT2, which will certainly contribute to further studies on the (patho)physiology of hGFAT2.


2020 ◽  
Author(s):  
Isadora A. Oliveira ◽  
Diego Allonso ◽  
Tácio V. A. Fernandes ◽  
Daniela M. S. Lucena ◽  
Gustavo T. Ventura ◽  
...  

AbstractGlycoconjugates play a central role in several cellular processes and alteration in their composition is associated to human pathologies. The hexosamine biosynthetic pathway is a route through which cells obtain substrates for cellular glycosylation, and is controlled by the glutamine: fructose-6-phosphate amidotransferase (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer, however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in E. coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the ordered bi-bi mechanism, and performs the glucosamine-6-phosphate synthesis much slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerase fructose-6-phosphate into glucose-6-phosphate even in presence of equimolar amounts of glutamine, in an unproductive glutamine hydrolysis. Structural analysis of the generated three-dimensional model rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations show such loop as the most flexible portion of the protein, which interacts with the protein mainly through the interdomain region, and plays a key role on conformational states of hGFAT2. Altogether, our study provides the first comprehensive set of data on the structure, kinetics and mechanics of hGFAT2, which will certainly contribute for further studies focusing on drug development targeting hGFAT2.


Sign in / Sign up

Export Citation Format

Share Document