scholarly journals Consistent differences among individuals more influential than energetic trade-offs in life history variation in grey seals (Halichoerus grypus)

2021 ◽  
Author(s):  
Janelle Badger ◽  
W. Don Bowen ◽  
Nell den Heyer ◽  
Greg A. Breed

Life history variation is thought to be mainly a result of energetic trade-offs among fitness components; however, detecting these trade-offs in natural populations has yielded mixed results. Individual quality and environmental variation may mask expected relationships among fitness components because some higher quality individuals may be able to acquire more resources and invest more in all functions. Thus, life history variation may be more affected by variation in individual quality than varying strategies to resolve energetic trade-offs, e.g. costs of reproduction. Here, we investigated whether variation in female quality or costs of reproduction is a larger factor in shaping differences in life history trajectories by assessing the relationship between survival and individual reproductive performance using a 32-year longitudinal data set of repeated reproductive measurements from 273 individually marked, known-aged female grey seals (Halichoerus grypus) from the Sable Island breeding colony. We defined individual reproductive performance using two traits: reproductive frequency (a female's probability of breeding) and provisioning performance (provisions given to young measured by offspring mass), computed using mixed effects models separately for (1) all reproductive events, and (2) an age-class specific reproductive investment. Individual differences contributed a large portion of the variance in reproductive traits, with individuals displaying a range in individual reproductive frequencies from 0.45 to 0.94, and a range of average pup weaning masses from 34.9 kg to 61.8 kg across their lifetime. We used a Cormack-Jolly-Seber open-population model to estimate the effect of these reproductive performance traits on adult survival probability. Our approach estimated a positive relationship between reproductive performance and survival, where individuals that consistently invest well in their offspring survive longer. The best supported model estimated survival as a function of age-class specific provisioning performance, where late-life performance was quite variable and had the greatest impact on survival, possibly indicating individual variation in senescence. There was no evidence to support a trade-off in reproductive performance and survival at the individual level. These results suggest that in grey seals, individual quality is a stronger driver in life history variation than varying strategies to mitigate trade-offs among fitness components.

2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Biparental care systems are a valuable model to examine conflict, cooperation, and coordination between unrelated individuals, as the product of the interactions between the parents influences the fitness of both individuals. A common experimental technique for testing coordinated responses to changes in the costs of parental care is to temporarily handicap one parent, inducing a higher cost of providing care. However, dissimilarity in experimental designs of these studies has hindered interspecific comparisons of the patterns of cost distribution between parents and offspring. Here we apply a comparative experimental approach by handicapping a parent at nests of five bird species using the same experimental treatment. In some species, a decrease in care by a handicapped parent was compensated by its partner, while in others the increased costs of care were shunted to the offspring. Parental responses to an increased cost of care primarily depended on the total duration of care that offspring require. However, life history pace (i.e., adult survival and fecundity) did not influence parental decisions when faced with a higher cost of caring. Our study highlights that a greater attention to intergenerational trade-offs is warranted, particularly in species with a large burden of parental care. Moreover, we demonstrate that parental care decisions may be weighed more against physiological workload constraints than against future prospects of reproduction, supporting evidence that avian species may devote comparable amounts of energy into survival, regardless of life history strategy.


2007 ◽  
Vol 363 (1490) ◽  
pp. 375-398 ◽  
Author(s):  
John R Speakman

Life-history trade-offs between components of fitness arise because reproduction entails both gains and costs. Costs of reproduction can be divided into ecological and physiological costs. The latter have been rarely studied yet are probably a dominant component of the effect. A deeper understanding of life-history evolution will only come about once these physiological costs are better understood. Physiological costs may be direct or indirect. Direct costs include the energy and nutrient demands of the reproductive event, and the morphological changes that are necessary to facilitate achieving these demands. Indirect costs may be optional ‘compensatory costs’ whereby the animal chooses to reduce investment in some other aspect of its physiology to maximize the input of resource to reproduction. Such costs may be distinguished from consequential costs that are an inescapable consequence of the reproductive event. In small mammals, the direct costs of reproduction involve increased energy, protein and calcium demands during pregnancy, but most particularly during lactation. Organ remodelling is necessary to achieve the high demands of lactation and involves growth of the alimentary tract and associated organs such as the liver and pancreas. Compensatory indirect costs include reductions in thermogenesis, immune function and physical activity. Obligatory consequential costs include hyperthermia, bone loss, disruption of sleep patterns and oxidative stress. This is unlikely to be a complete list. Our knowledge of these physiological costs is currently at best described as rudimentary. For some, we do not even know whether they are compensatory or obligatory. For almost all of them, we have no idea of exact mechanisms or how these costs translate into fitness trade-offs.


1991 ◽  
Vol 69 (10) ◽  
pp. 2540-2547 ◽  
Author(s):  
Nathaniel T. Wheelwright ◽  
Joanna Leary ◽  
Caragh Fitzgerald

We investigated the effect of brood size on nestling growth and survival, parental survival, and future fecundity in tree swallows (Tachycineta bicolor) over a 4-year period (1987–1990) in an effort to understand whether reproductive trade-offs limit clutch size in birds. In addition to examining naturally varying brood sizes in a population on Kent Island, New Brunswick, Canada, we experimentally modified brood sizes, increasing or decreasing the reproductive burdens of females by two offspring. Unlike previous studies, broods of the same females were enlarged or reduced in up to 3 successive years in a search for evidence of cumulative costs of reproduction that might go undetected by a single brood manipulation. Neither observation nor experiment supported the existence of a trade-off between offspring quality and quantity, in contrast with the predictions of life-history theory. Nestling wing length, mass, and tarsus length were unrelated to brood size. Although differences between means were in the direction predicted, few differences were statistically significant, despite large sample sizes. Nestlings from small broods were no more likely to return as breeding adults than nestlings from large broods, but return rates of both groups were very low. Parental return rates were also independent of brood size, and there was no evidence of a negative effect of brood size on future fecundity (laying date, clutch size). Reproductive success, nestling size, and survival did not differ between treatments for females whose broods were manipulated in successive years. Within the range of brood sizes observed in this study, the life-history costs of feeding one or two additional nestlings in tree swallows appear to be slight and cannot explain observed clutch sizes. Costs not measured in this study, such as the production of eggs or postfledging parental care, may be more important in limiting clutch size in birds.


The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Robert E. Ricklefs

Abstract Although we have learned much about avian life histories during the 50 years since the seminal publications of David Lack, Alexander Skutch, and Reginald Moreau, we still do not have adequate explanations for some of the basic patterns of variation in life-history traits among birds. In part, this reflects two consequences of the predominance of evolutionary ecology thinking during the past three decades. First, by blurring the distinction between life-history traits and life-table variables, we have tended to divorce life histories from their environmental context, which forms the link between the life history and the life table. Second, by emphasizing constrained evolutionary responses to selective factors, we have set aside alternative explanations for observed correlations among life-history traits and life-table variables. Density-dependent feedback and independent evolutionary response to correlated aspects of the environment also may link traits through different mechanisms. Additionally, in some cases we have failed to evaluate quantitatively ideas that are compelling qualitatively, ignored or explained away relevant empirical data, and neglected logical implications of certain compelling ideas. Comparative analysis of avian life histories shows that species are distributed along a dominant slow-fast axis. Furthermore, among birds, annual reproductive rate and adult mortality are directly proportional to each other, requiring that pre-reproductive survival is approximately constant. This further implies that age at maturity increases dramatically with increasing adult survival rate. The significance of these correlations is obscure, particularly because survival and reproductive rates at each age include the effects of many life-history traits. For example, reproductive rate is determined by clutch size, nesting success, season length, and nest-cycle length, each of which represents the outcome of many different interactions of an individual's life-history traits with its environment. Resolution of the most basic issues raised by patterns of life histories clearly will require innovative empirical, modeling, and experimental approaches. However, the most fundamental change required at this time is a broadening of the evolutionary ecology paradigm to include a variety of alternative mechanisms for generating patterns of life-history variation.


2018 ◽  
Vol 94 (3) ◽  
pp. 1105-1115 ◽  
Author(s):  
Anna Ziomkiewicz ◽  
Szymon Wichary ◽  
Grazyna Jasienska

2005 ◽  
Vol 273 (1587) ◽  
pp. 741-750 ◽  
Author(s):  
Barbara Taborsky

There is increasing evidence that the environment experienced early in life can strongly influence adult life histories. It is largely unknown, however, how past and present conditions influence suites of life-history traits regarding major life-history trade-offs. Especially in animals with indeterminate growth, we may expect that environmental conditions of juveniles and adults independently or interactively influence the life-history trade-off between growth and reproduction after maturation. Juvenile growth conditions may initiate a feedback loop determining adult allocation patterns, triggered by size-dependent mortality risk. I tested this possibility in a long-term growth experiment with mouthbrooding cichlids. Females were raised either on a high-food or low-food diet. After maturation half of them were switched to the opposite treatment, while the other half remained unchanged. Adult growth was determined by current resource availability, but key reproductive traits like reproductive rate and offspring size were only influenced by juvenile growth conditions, irrespective of the ration received as adults. Moreover, the allocation of resources to growth versus reproduction and to offspring number versus size were shaped by juvenile rather than adult ecology. These results indicate that early individual history must be considered when analysing causes of life-history variation in natural populations.


2009 ◽  
Vol 5 (3) ◽  
pp. 339-342 ◽  
Author(s):  
Gregory E. Blomquist

Trade-offs are central to life-history theory but difficult to document. Patterns of phenotypic and genetic correlations in rhesus macaques, Macaca mulatta —a long-lived, slow-reproducing primate—are used to test for a trade-off between female age of first reproduction and adult survival. A strong positive genetic correlation indicates that female macaques suffer reduced adult survival when they mature relatively early and implies primate senescence can be explained, in part, by antagonistic pleiotropy. Contrasts with a similar human study implicate the extension of parental effects to later ages as a potential mechanism for circumventing female life-history trade-offs in human evolution.


2015 ◽  
Vol 282 (1814) ◽  
pp. 20151050 ◽  
Author(s):  
Nathan R. Senner ◽  
Jesse R. Conklin ◽  
Theunis Piersma

Phenotypic differences among individuals can arise during any stage of life. Although several distinct processes underlying individual differences have been defined and studied (e.g. parental effects, senescence), we lack an explicit, unified perspective for understanding how these processes contribute separately and synergistically to observed variation in functional traits. We propose a conceptual framework based on a developmental view of life-history variation, linking each ontogenetic stage with the types of individual differences originating during that period. In our view, the salient differences among these types are encapsulated by three key criteria: timing of onset, when fitness consequences are realized, and potential for reversibility. To fill a critical gap in this framework, we formulate a new term to refer to individual differences generated during adulthood—reversible state effects. We define these as ‘reversible changes in a functional trait resulting from life-history trade-offs during adulthood that affect fitness’, highlighting how the adult phenotype can be repeatedly altered in response to environmental variation. Defining individual differences in terms of trade-offs allows explicit predictions regarding when and where fitness consequences should be expected. Moreover, viewing individual differences in a developmental context highlights how different processes can work in concert to shape phenotype and fitness, and lays a foundation for research linking individual differences to ecological and evolutionary theory.


2008 ◽  
Vol 66 (2) ◽  
pp. 349-357 ◽  
Author(s):  
Olav A. Ormseth ◽  
Brenda L. Norcross

Abstract Ormseth, O. A., and Norcross, B. L. 2009. Causes and consequences of life-history variation in North American stocks of Pacific cod. – ICES Journal of Marine Science, 66: 349–357. Life-history strategies of four Pacific cod (Gadus macrocephalus) stocks in the eastern North Pacific Ocean are outlined. Southern stocks grew and matured quicker, but reached smaller maximum size and had shorter lifespans than northern stocks. The trade-offs resulted in similar lifetime reproductive success among all stocks. Growth was highly dependent on latitude, but not on temperature, possibly because of differences in the duration of the growing season. Comparisons with Atlantic cod (Gadus morhua) revealed similar latitude/growth relationships among Atlantic cod stocks grouped by geographic region. In Pacific cod, greater size and longevity in the north appeared to be adaptations to overcome environmental constraints on growth and to maintain fitness. An egg production-per-recruit model suggested that the life-history strategy of northern Pacific cod stocks made them less resilient to fishing activity and age truncation than southern stocks.


Sign in / Sign up

Export Citation Format

Share Document