scholarly journals Cell adhesion factors during adolescence support amygdalo-cortical connections and flexible action later in life

2021 ◽  
Author(s):  
Henry W Kietzman ◽  
Lauren P Shapiro ◽  
Jidong Guo ◽  
Gracy Trinoskey-Rice ◽  
Shannon L Gourley

Adolescent brain development is characterized by dramatic neuronal remodeling in the prefrontal cortex. This plasticity is presumed to act in part to "set the stage" for prefrontal cortical function in adulthood, but causal relationships have largely not been verified. Integrins are cell adhesion factors that provide a link between the extracellular matrix and the intracellular actin cytoskeleton. We find that b1-integrin presence in the prelimbic subregion of the prefrontal cortex (PL) during adolescence, but not adulthood, is necessary for adult mice to select actions based on reward likelihood and value. These behaviors require coordinated limbic-frontal-striatal circuits. We identified projections from the basolateral amygdala (BLA) to PL as being necessary for mice to express learned response strategies. We then visualized adolescent PL neurons receiving input from the BLA and projecting to the dorsomedial striatum (DMS), a primary striatal output by which the PL controls reward-related behavior. These projection-defined neurons had a more "adult-like" morphology relative to a general population of layer V PL neurons. b1-integrin loss caused the overexpression of stubby-type dendritic spines at the expense of more mature spines, a phenotype not observed when b1-integrins were silenced before or after adolescence. Together, these experiments localize b1-integrin-mediated cell adhesion activity within a developing di-synaptic circuit that coordinates flexible action.

2021 ◽  
Author(s):  
Yoav Printz ◽  
Pritish Patil ◽  
Mathias Mahn ◽  
Asaf Benjamin ◽  
Anna Litvin ◽  
...  

The medial prefrontal cortex (mPFC) mediates a variety of complex cognitive functions via its vast and diverse connections with cortical and subcortical structures. Understanding the patterns of synaptic connectivity that comprise the mPFC local network is crucial for deciphering how this circuit processes information and relays it to downstream structures. To elucidate the synaptic organization of the mPFC, we developed a high-throughput optogenetic method for mapping large-scale functional synaptic connectivity. We show that mPFC neurons that project to the basolateral amygdala display unique spatial patterns of local-circuit synaptic connectivity within the mPFC, which distinguish them from the general mPFC cell population. Moreover, the intrinsic properties of the postsynaptic mPFC cell and anatomical position of both cells jointly account for ~7.5% of the variation in probability of connection between mPFC neurons, with anatomical distance and laminar position explaining most of this fraction in variation. Our findings demonstrate a functional segregation of mPFC excitatory neuron subnetworks, and reveal the factors determining connectivity in the mPFC.


2002 ◽  
Vol 14 (3) ◽  
pp. 348-370 ◽  
Author(s):  
Georg Northoff ◽  
Thomas Witze ◽  
Andre Richter ◽  
Matthias Gessner ◽  
Florian Schlagenhauf ◽  
...  

Various prefrontal cortical regions have been shown to be activated during emotional stimulation, whereas neurochemical mechanisms underlying emotional processing in the prefrontal cortex remain unclear. We therefore investigated the influence of the GABA-A potentiator lorazepam on prefrontal cortical emotional—motor spatio-temporal activation pattern in a combined functional magnetic resonance imaging/magnetoencephalography study. Lorazepam led to the reversal in orbito-frontal activation pattern, a shift of the early magnetic field dipole from the orbito-frontal to medial prefrontal cortex, and alterations in premotor/motor cortical function during negative and positive emotional stimulation. It is concluded that negative emotional processing in the orbito-frontal cortex may be modulated either directly or indirectly by GABA-A receptors. Such a modulation of orbito-frontal cortical emotional function by lorazepam has to be distinguished from its effects on cortical motor function as being independent from the kind of processing either emotional or nonemotional.


1998 ◽  
Vol 172 (4) ◽  
pp. 316-323 ◽  
Author(s):  
Sean A. Spence ◽  
Steven R. Hirsch ◽  
David J. Brooks ◽  
Paul M. Grasby

BackgroundHypo-activation of the left dorsolateral prefrontal cortex is inconsistently found in neuroimaging studies of schizophrenia. As the left dorsolateral prefrontal cortex is involved in the generation of action, disordered function in this region may be implicated in schizophrenic symptomatology.MethodWe used H215O positron emission tomography to study dorsolateral prefrontal cortical function in men with schizophrenia (n=13) and male control subjects (n=6) performing joystick movements on two occasions, 4–6 weeks apart. The patients were initially in relapse. To clarify dorsolateral prefrontal cortical function we also scanned another group of control subjects (n=5) performing mouth movements.ResultsThe control subjects performing hand or mouth movements activated the left dorsolateral prefrontal cortex to a maximum when the movements were self-selected. The men with relapsed schizophrenia exhibited left dorsolateral prefrontal cortical hypo-activation, which remitted with symptomatic improvement.ConclusionsHypofrontality in these patients is a dynamic phenomenon across time, possibly related to current symptomatology. The most appropriate question about the presence of hypofrontality in schizophrenia may be when, rather than whether, it will occur.


2015 ◽  
Vol 206 (4) ◽  
pp. 316-323 ◽  
Author(s):  
Cheng-Ta Li ◽  
Tung-Ping Su ◽  
Shyh-Jen Wang ◽  
Pei-Chi Tu ◽  
Jen-Chuen Hsieh

BackgroundMedication-resistant depression (MRD) is associated with poorer attentional performance and immense socioeconomic costs.AimsWe aimed to investigate the central pathophysiology of MRD, previously linked to impaired prefrontal cortex function.MethodA total of 54 participants (22 with MRD, 16 with non-resistant depression, 16 healthy controls) were recruited. Non-MRD status was confirmed by a prospective 6-week antidepressant trial. All medication-free participants underwent a go/no-go task to study prefrontal cortical function (attention) and positron emission tomography scans to study regional cerebral glucose metabolism (rCMglu) at rest.ResultsThe MRD group had worse attentional ratings and decreased rCMglu compared with the non-MRD and control groups. Attentional performance was positively associated with prefrontal cortex rCMglu. The prefrontal cortex differences between MRD and non-MRD groups remained after adjusting for past depressive episodes (F(1,35) = 4.154, P = 0.043).ConclusionsPronounced hypofrontality, with the associated attentional deficits, has a key role in the neuropathology of medication-resistant depression.


2019 ◽  
Vol 30 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Farshad A Mansouri ◽  
Mark J Buckley ◽  
Daniel J Fehring ◽  
Keiji Tanaka

Abstract Imaging and neural activity recording studies have shown activation in the primate prefrontal cortex when shifting attention between visual dimensions is necessary to achieve goals. A fundamental unanswered question is whether representations of these dimensions emerge from top-down attentional processes mediated by prefrontal regions or from bottom-up processes within visual cortical regions. We hypothesized a causative link between prefrontal cortical regions and dimension-based behavior. In large cohorts of humans and macaque monkeys, performing the same attention shifting task, we found that both species successfully shifted between visual dimensions, but both species also showed a significant behavioral advantage/bias to a particular dimension; however, these biases were in opposite directions in humans (bias to color) versus monkeys (bias to shape). Monkeys’ bias remained after selective bilateral lesions within the anterior cingulate cortex (ACC), frontopolar cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), or superior, lateral prefrontal cortex. However, lesions within certain regions (ACC, DLPFC, or OFC) impaired monkeys’ ability to shift between these dimensions. We conclude that goal-directed processing of a particular dimension for the executive control of behavior depends on the integrity of prefrontal cortex; however, representation of competing dimensions and bias toward them does not depend on top-down prefrontal-mediated processes.


Sign in / Sign up

Export Citation Format

Share Document