scholarly journals Diverse human astrocyte and microglial transcriptional responses to Alzheimer's pathology

2021 ◽  
Author(s):  
Amy Smith ◽  
Karen Davey ◽  
Stergios Tsartsalis ◽  
Combiz Khozoie ◽  
Nurun Nahar Fancy ◽  
...  

To better define roles that astrocytes and microglia play in Alzheimers disease (AD), we used single-nuclei RNA sequencing to comprehensively characterize transcriptomes in astrocyte and microglia nuclei isolated post mortem from neuropathologically-defined AD and control brains with a range of amyloid-beta and phospho-tau (pTau) pathology. Significant differences in glial gene expression (including AD risk genes expressed in astrocytes [CLU, MEF2C, IQCK] and microglia [APOE, MS4A6A, PILRA]) were correlated with tissue amyloid and pTau expression. Astrocytes were enriched for proteostatic, inflammatory and metal ion homeostasis pathways. Pathways for phagocytosis, proteostasis and autophagy were highly enriched in microglia and perivascular macrophages. Gene co-expression analyses revealed potential functional associations of soluble biomarkers of AD in astrocytes (CLU) and microglia (GPNMB). Our work highlights responses of both astrocytes and microglia for pathological protein clearance and inflammation, as well as glial transcriptional diversity in AD.

Author(s):  
Amy M. Smith ◽  
Karen Davey ◽  
Stergios Tsartsalis ◽  
Combiz Khozoie ◽  
Nurun Fancy ◽  
...  

AbstractTo better define roles that astrocytes and microglia play in Alzheimer’s disease (AD), we used single-nuclei RNA-sequencing to comprehensively characterise transcriptomes in astrocyte and microglia nuclei selectively enriched during isolation post-mortem from neuropathologically defined AD and control brains with a range of amyloid-beta and phospho-tau (pTau) pathology. Significant differences in glial gene expression (including AD risk genes expressed in both the astrocytes [CLU, MEF2C, IQCK] and microglia [APOE, MS4A6A, PILRA]) were correlated with tissue amyloid or pTau expression. The differentially expressed genes were distinct between with the two cell types and pathologies, although common (but cell-type specific) gene sets were enriched with both pathologies in each cell type. Astrocytes showed enrichment for proteostatic, inflammatory and metal ion homeostasis pathways. Pathways for phagocytosis, inflammation and proteostasis were enriched in microglia and perivascular macrophages with greater tissue amyloid, but IL1-related pathway enrichment was found specifically in association with pTau. We also found distinguishable sub-clusters in the astrocytes and microglia characterised by transcriptional signatures related to either homeostatic functions or disease pathology. Gene co-expression analyses revealed potential functional associations of soluble biomarkers of AD in astrocytes (CLU) and microglia (GPNMB). Our work highlights responses of both astrocytes and microglia for pathological protein clearance and inflammation, as well as glial transcriptional diversity in AD.


Metallomics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 114-132
Author(s):  
Nakisa Malakooti ◽  
Blaine Roberts ◽  
Melanie A. Pritchard ◽  
Irene Volitakis ◽  
Ron C. Kim ◽  
...  

A failure in metal ion homeostasis may be a characteristic feature of the Down syndrome brain.


2007 ◽  
Vol 189 (11) ◽  
pp. 3996-4013 ◽  
Author(s):  
Karla D. Passalacqua ◽  
Nicholas H. Bergman ◽  
Jung Yeop Lee ◽  
David H. Sherman ◽  
Philip C. Hanna

ABSTRACT Microarray analyses were conducted to evaluate the paraquat-induced global transcriptional response of Bacillus anthracis Sterne (34F2) to varying levels of endogenous superoxide stress. Data revealed that the transcription of genes putatively involved in metal/ion transport, bacillibactin siderophore biosynthesis, the glyoxalase pathway, and oxidoreductase activity was perturbed most significantly. A B. anthracis mutant lacking the superoxide dismutase gene sodA1 (ΔsodA1) had transcriptional responses to paraquat similar to, but notably larger than, those of the isogenic parental strain. A small, unique set of genes was found to be differentially expressed in the ΔsodA1 mutant relative to the parental strain during growth in rich broth independently of induced oxidative stress. The bacillibactin siderophore biosynthetic genes were notably overexpressed in Sterne and ΔsodA1 cells after treatment with paraquat. The bacillibactin siderophore itself was isolated from the supernatants and lysates of cells grown in iron-depleted medium and was detected at lower levels after treatment with paraquat. This suggests that, while transcriptional regulation of these genes is sensitive to changes in the redox environment, additional levels of posttranscriptional control may exist for bacillibactin biosynthesis, or the enzymatic siderophore pipeline may be compromised by intracellular superoxide stress or damage. The ΔsodA1 mutant showed slower growth in a chelated iron-limiting medium but not in a metal-depleted medium, suggesting a connection between the intracellular redox state and iron/metal ion acquisition in B. anthracis. A double mutant lacking both the sodA1 and sodA2 genes (ΔsodA1 ΔsodA2) was attenuated for growth in manganese-depleted medium, suggesting a slight level of redundancy between sodA1 and sodA2, and a role for the sod genes in manganese homeostasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
A. Sukumaran ◽  
S. Pladwig ◽  
J. Geddes-McAlister

Abstract Background Microbial organisms encounter a variety of environmental conditions, including changes to metal ion availability. Metal ions play an important role in many biological processes for growth and survival. As such, microbes alter their cellular protein levels and secretion patterns in adaptation to a changing environment. This study focuses on Klebsiella pneumoniae, an opportunistic bacterium responsible for nosocomial infections. By using K. pneumoniae, we aim to determine how a nutrient-limited environment (e.g., zinc depletion) modulates the cellular proteome and secretome of the bacterium. By testing virulence in vitro, we provide novel insight into bacterial responses to limited environments in the presence of the host. Results Analysis of intra- and extracellular changes identified 2380 proteins from the total cellular proteome (cell pellet) and 246 secreted proteins (supernatant). Specifically, HutC, a repressor of the histidine utilization operon, showed significantly increased abundance under zinc-replete conditions, which coincided with an expected reduction in expression of genes within the hut operon from our validating qRT-PCR analysis. Additionally, we characterized a putative cation transport regulator, ChaB that showed significantly higher abundance under zinc-replete vs. -limited conditions, suggesting a role in metal ion homeostasis. Phenotypic analysis of a chaB deletion strain demonstrated a reduction in capsule production, zinc-dependent growth and ion utilization, and reduced virulence when compared to the wild-type strain. Conclusions This is first study to comprehensively profile the impact of zinc availability on the proteome and secretome of K. pneumoniae and uncover a novel connection between zinc transport and capsule production in the bacterial system.


2003 ◽  
Vol 18 (3) ◽  
pp. 162-169 ◽  
Author(s):  
S.E. Theocharis ◽  
A.P. Margeli ◽  
A. Koutselinis

The metallothionein (MT) family is a class of low molecular weight, intracellular and cysteine-rich proteins presenting high affinity for metal ions. Although the members of this family were discovered nearly 40 years ago, their functional significance remains obscure. Four major MT isoforms, MT-1, MT-2, MT-3 and MT-4, have been identified in mammals. MTs are involved in many pathophysiological processes such as metal ion homeostasis and detoxification, protection against oxidative damage, cell proliferation and apoptosis, chemoresistance and radiotherapy resistance. MT isoforms have been shown to be involved in several aspects of the carcinogenic process, cancer development and progression. MT expression has been implicated as a transient response to any form of stress or injury providing cytoprotective action. Although MT participates in the carcinogenic process, its use as a potential marker of tumor differentiation or cell proliferation, or as a predictor of poor prognosis remains unclear. In the present review the involvement of MT in defense mechanisms to toxicity and in carcinogenicity is discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rute Oliveira ◽  
Matthew J. Bush ◽  
Sílvia Pires ◽  
Govind Chandra ◽  
Delia Casas-Pastor ◽  
...  

AbstractExtracytoplasmic function (ECF) sigma factors are key transcriptional regulators that prokaryotes have evolved to respond to environmental challenges. Streptomyces tsukubaensis harbours 42 ECFs to reprogram stress-responsive gene expression. Among them, SigG1 features a minimal conserved ECF σ2–σ4 architecture and an additional C-terminal extension that encodes a SnoaL_2 domain, which is characteristic for ECF σ factors of group ECF56. Although proteins with such domain organisation are widely found among Actinobacteria, the functional role of ECFs with a fused SnoaL_2 domain remains unknown. Our results show that in addition to predicted self-regulatory intramolecular amino acid interactions between the SnoaL_2 domain and the ECF core, SigG1 activity is controlled by the cognate anti-sigma protein RsfG, encoded by a co-transcribed sigG1-neighbouring gene. Characterisation of ∆sigG1 and ∆rsfG strains combined with RNA-seq and ChIP-seq experiments, suggests the involvement of SigG1 in the morphological differentiation programme of S. tsukubaensis. SigG1 regulates the expression of alanine dehydrogenase, ald and the WhiB-like regulator, wblC required for differentiation, in addition to iron and copper trafficking systems. Overall, our work establishes a model in which the activity of a σ factor of group ECF56, regulates morphogenesis and metal-ions homeostasis during development to ensure the timely progression of multicellular differentiation.


2006 ◽  
Vol 1 ◽  
pp. 117727190600100 ◽  
Author(s):  
Allan Evald Nielsen ◽  
Adam Bohr ◽  
Milena Penkowa

Metallothionein (MT) is a highly conserved, low-molecular-weight, cysteine-rich protein that occurs in 4 isoforms (MT-I to MT-IV), of which MT-I+II are the major and best characterized proteins. This review will focus on mammalian MT-I+II and their functional impact upon cellular survival and death, as seen in two rather contrasting pathological conditions: Neurodegeneration and neoplasms. MT-I+II have analogous functions including: 1) Antioxidant scavenging of reactive oxygen species (ROS); 2) Cytoprotection against degeneration and apoptosis; 3) Stimulation of cell growth and repair including angiogenesis/revascularization, activation of stem/progenitor cells, and neuroregeneration. Thereby, MT-I+II mediate neuroprotection, CNS restoration and clinical recovery during neurodegenerative disorders. Due to the promotion of cell survival, increased MT-I+II levels have been associated with poor tumor prognosis, although the data are less clear and direct causative roles of MT-I+II in oncogenesis remain to be identified. The MT-I+II molecular mechanisms of actions are not fully elucidated. However, their role in metal ion homeostasis might be fundamental in controlling Zn-dependent transcription factors, protein synthesis, cellular energy levels/metabolism and cell redox state. Here, the neuroprotective and regenerative functions of MT-I+II are reviewed, and the presumed link to oncogenesis is critically perused.


Sign in / Sign up

Export Citation Format

Share Document