scholarly journals Resiniferatoxin hampers the nocifensive response of Caenorhabditis elegans to noxious heat, and pathway analysis revealed that the Wnt signaling pathway is involved

2021 ◽  
Author(s):  
Jennifer Ben Salem ◽  
Bruno Nkambeu ◽  
Dina Arvanitis ◽  
Francis Beaudry

Resiniferatoxin (RTX) is a metabolite extracted from Euphorbia resinifera. RTX is a potent capsaicin analog with specific biological activities resulting from its agonist activity with the transient receptor potential channel vanilloid subfamily member 1 (TRPV1). RTX has been examined as a pain reliever, and more recently, investigated for its ability to desensitize cardiac sensory fibers expressing TRPV1 to improve chronic heart failure (CHF) outcomes using validated animal models. Caenorhabditis elegans (C. elegans) expresses orthologs of vanilloid receptors activated by capsaicin, producing antinociceptive effects. Thus, we used C. elegans to characterize the antinociceptive properties and performed proteomic profiling to uncover specific signaling networks. After exposure to RTX, wild-type (N2) and mutant C. elegans were placed on petri dishes divided into quadrants for heat stimulation. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that RTX can hamper the nocifensive response of C. elegans to noxious heat. The effect was reversed 6 h after RTX exposure. Additionally, we identified the RTX target, the C. elegans transient receptor potential channel OCR-3. The proteomics and pathway enrichment analysis results suggest that Wnt signaling is triggered by the agonistic effects of RTX on C. elegans vanilloid receptors.

2020 ◽  
Author(s):  
Bruno Nkambeu ◽  
Jennifer Ben Salem ◽  
Francis Beaudry

AbstractCapsaicin is the most abundant pungent molecule identified in red chili peppers, and it is widely used for food flavoring, in pepper spray for self-defense devices and recently in ointments for the relief of neuropathic pain. Capsaicin and several other related vanilloid compounds are secondary plant metabolites. Capsaicin is a selective agonist of the transient receptor potential channel, vanilloid subfamily member 1 (TRPV1). After exposition to vanilloid solution, C. elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The data revealed for the first-time that capsaicin can impede nocifensive response of C. elegans to noxious heat (32°C – 35°C) following a sustained exposition. The effect was reversed 6h post capsaicin exposition. Additionally, we identified the capsaicin target, the C. elegans transient receptor potential channel OCR-2. Further experiments also undoubtedly revealed anti-nociceptive effect for capsaicin analogues, including ginger (Zingiber officinale) and turmeric (Curcuma longa) secondary metabolites.


2021 ◽  
Vol 17 ◽  
pp. ???
Author(s):  
Hao Luo ◽  
Bing Cai ◽  
Jing Pan ◽  
Hai-Xiang Shi ◽  
Kai-Kai Wang ◽  
...  

FXYD6, an unnecessary auxiliary subunit of Na+,K+-ATPase, is expressed in the nervous system. However, its functions remain largely unclear. In the present study, we find that FXYD6 is involved in the thermal nociception. FXYD6 was mainly expressed in small-diameter DRG neurons expressing transient receptor potential channel V1 (TRPV1). In the SNS-Cre/ Fxyd6F/F mice, loss of FXYD6 in these sensory neurons impaired the behavioral responses to noxious heat stimulus and intraplantar injection of capsaicin. The capsaicin-induced and TRPV1-mediated currents were decreased in the FXYD6–deficient DRG neurons. Heterologous expression of FXYD6 could increase the TRPV1 capsaicin-sensitive currents in HEK293 cells. Furthermore, we found that the negatively charged PGDEE motif in C-terminal of FXYD6 is required for the FXYD6/TRPV1 interaction and FXYD6-mediated enhancement of TRPV1. Disrupting the FXYD6/TRPV1 interaction with the TAT-PGDEE peptide could elevate the threshold of thermal nociception. Therefore, FXYD6 maintains the thermal nociception via interacting with TRPV1 channel in nociceptors.


2020 ◽  
Author(s):  
Bruno Nkambeu ◽  
Jennifer Ben Salem ◽  
Francis Beaudry

AbstractEugenol, a known vanilloid, was frequently used in dentistry as a local analgesic in addition, antibacterial and neuroprotective effects were also reported. Eugenol, capsaicin and many vanilloids are interacting with the transient receptor potential vanilloid 1 (TRPV1) in mammals and are activated by noxious heat. The pharmacological manipulation of the TRPV1 has been shown to have therapeutic value. Caenorhabditis elegans (C. elegans) express TRPV orthologs (e.g. OCR-2, OSM-9) and it is a commonly used animal model system to study nociception as it displays a well-defined and reproducible nocifensive behavior. After exposure to vanilloid solutions, C. elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The results showed that eugenol, vanillin and zingerone can hamper nocifensive response of C. elegans to noxious heat (32°C – 35°C) following a sustained exposition. Also, the effect was reversed 6h post exposition. Furthermore, eugenol and vanillin did not target specifically the OCR-2 or OSM-9 but zingerone did specifically target the OCR-2 similarly to capsaicin. Further structural and physicochemical analyses were performed. Key parameters for quantitative structure-property relationships (QSPR), quantitative structure-activity relationships (QSAR) and frontier orbital analyses suggest similarities and dissimilarities amongst the tested vanilloids and capsaicin in accordance with the relative anti-nociceptive effects observed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kohei Ohnishi ◽  
Shigeru Saito ◽  
Toru Miura ◽  
Akane Ohta ◽  
Makoto Tominaga ◽  
...  

Abstract Caenorhabditis elegans (C. elegans) exhibits cold tolerance and temperature acclimatisation regulated by a small number of head sensory neurons, such as the ADL temperature-sensing neurons that express three transient receptor potential vanilloid (TRPV) channel subunits, OSM-9, OCR-2, and OCR-1. Here, we show that an OSM-9/OCR-2 regulates temperature acclimatisation and acts as an accessorial warmth-sensing receptor in ADL neurons. Caenorhabditis elegans TRPV channel mutants showed abnormal temperature acclimatisation. Ectopic expression of OSM-9 and OCR-2 in non-warming-responsive gustatory neurons in C. elegans and Xenopus oocytes revealed that OSM-9 and OCR-2 cooperatively responded to warming; however, neither TRPV subunit alone was responsive to warming. A warming-induced OSM-9/OCR-2-mediated current was detectable in Xenopus oocytes, yet ADL in osm-9 ocr-2 double mutant responds to warming; therefore, an OSM-9/OCR-2 TRPV channel and as yet unidentified temperature receptor might coordinate transmission of temperature signalling in ADL temperature-sensing neurons. This study demonstrates direct sensation of warming by TRPV channels in C. elegans.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 147
Author(s):  
Yu Fu ◽  
Peng Shang ◽  
Bo Zhang ◽  
Xiaolong Tian ◽  
Ruixue Nie ◽  
...  

In animals, muscle growth is a quantitative trait controlled by multiple genes. Previously, we showed that the transient receptor potential channel 1 (TRPC1) gene was differentially expressed in muscle tissues between pig breeds with divergent growth traits base on RNA-seq. Here, we characterized TRPC1 expression profiles in different tissues and pig breeds and showed that TRPC1 was highly expressed in the muscle. We found two single nucleotide polymorphisms (SNPs) (C-1763T and C-1604T) in TRPC1 that could affect the promoter region activity and regulate pig growth rate. Functionally, we used RNAi and overexpression to illustrate that TRPC1 promotes myoblast proliferation, migration, differentiation, fusion, and muscle hypertrophy while inhibiting muscle degradation. These processes may be mediated by the activation of Wnt signaling pathways. Altogether, our results revealed that TRPC1 might promote muscle growth and development and plays a key role in Wnt-mediated myogenesis.


Sign in / Sign up

Export Citation Format

Share Document