scholarly journals IL-2 stromal signatures dissect immunotherapy response groups in non-small cell lung cancer (NSCLC)

Author(s):  
James Monkman ◽  
Honesty Kim ◽  
Aaron Mayer ◽  
Ahmed Mehdi ◽  
Nicholas Matigian ◽  
...  

Introduction Immunotherapies, such as immune checkpoint inhibitors (ICI) have shown durable benefit in a subset of non-small cell lung cancer (NSCLC) patients. The mechanisms for this are not fully understood, however the composition and activation status of the cellular milieu contained within the tumour microenvironment (TME) is becomingly increasingly recognised as a driving factor in treatment-refractory disease. Methods Here, we employed multiplex IHC (mIHC), and digital spatial profiling (DSP) to capture the targeted immune proteome and transcriptome of tumour and TME compartments of pre-treatment samples from a 2nd line NSCLC ICI-treated cohort (n=41 patients; n=25 responders, n=16 non-responders). Results We demonstrate by mIHC that the interaction of CD68+ macrophages with PD1+, FoxP3+ cells is significantly enriched in ICI refractory tumours (p=0.012). Our study revealed that patients sensitive to ICI therapy expressed higher levels of IL2 receptor alpha (CD25, p=0.028) within the tumour compartments, which corresponded with the increased expression of IL2 mRNA (p=0.001) within their stroma, indicative of key conditions for ICI efficacy prior to treatment. IL2 mRNA levels within the stroma positively correlated with the expression of pro-apoptotic markers cleaved caspase 9 (p=2e-5) and BAD (p=5.5e-4) and negatively correlated with levels of memory T cells (CD45RO) (p=7e-4). Immuno-inhibitory markers CTLA-4 (p=0.021) and IDO-1 (p=0.023) were also supressed in ICI-responsive patients. Of note, tumour CD44 (p=0.02) was depleted in the response group and corresponded inversely with significantly higher stromal expression of its ligand SPP1 (osteopontin, p=0.008). Analysis of differentially expressed transcripts indicated the potential inhibition of stromal interferon-gamma (IFNγ) activity, as well as estrogen-receptor and Wnt-1 signalling activity within the tumour cells of ICI responsive patients. Cox survival analysis indicated tumour CD44 expression was associated with poorer prognosis (HR=1.61, p=0.01), consistent with its depletion in ICI sensitive patients. Similarly, stromal CTLA-4 (HR=1.78, p=0.003) and MDSC/M2 macrophage marker ARG1 (HR=2.37, p=0.01) were associated with poorer outcome while levels of apoptotic marker BAD (HR=0.5, p=0.01) appeared protective. Interestingly, stromal mRNA for E-selectin (HR=652, p=0.001), CCL17 (HR=70, p=0.006) and MTOR (HR=1065, p=0.008) were highly associated with poorer outcome, indicating pro-tumourigenic features in the tumour microenvironment that may facilitate ICI resistance. Conclusions Through multi-modal approaches, we have dissected the characteristics of NSCLC and provide evidence for the role of IL2 and stromal activation by osteopontin in the efficacy of current generations of ICI therapy. The enrichment of SPP1 in the stroma of ICI sensitive patients in our data is a novel finding, indicative of stromal activation that may aid immune cell survival and activity despite no clear association with increased levels of immune infiltrate.

2020 ◽  
Vol 29 (156) ◽  
pp. 200028
Author(s):  
Andrew DeMaio ◽  
Daniel Sterman

The past decade has brought remarkable improvements in the treatment of non-small cell lung cancer (NSCLC) with novel therapies, such as immune checkpoint inhibitors, although response rates remain suboptimal. Direct intratumoural injection of therapeutic agents via bronchoscopic approaches poses the unique ability to directly target the tumour microenvironment and offers several theoretical advantages over systemic delivery including decreased toxicity. Increases in understanding of the tumour microenvironment and cancer immunology have identified many potential options for intratumoural therapy, especially combination immunotherapies. Herein, we review advances in the development of novel bronchoscopic treatments for NSCLC over the past decade with a focus on the potential of intratumoural immunotherapy alone or in combination with systemic treatments.


2019 ◽  
Author(s):  
Roberta Poli ◽  
Clement Dumont ◽  
Lisa Pietrogiovanna ◽  
Vincent Servois ◽  
Sophie Beaucaire-Danel ◽  
...  

2021 ◽  
Vol 16 (3) ◽  
pp. S300-S301
Author(s):  
M. Peravali ◽  
C. Gomes-Lima ◽  
E. Tefera ◽  
M. Baker ◽  
M. Sherchan ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1794
Author(s):  
Alice Indini ◽  
Erika Rijavec ◽  
Francesco Grossi

Immune checkpoint inhibitors (ICIs) targeting the programmed cell death (PD)-1 protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, have revolutionized the management of patients with advanced non-small cell lung cancer (NSCLC). Unfortunately, only a small portion of NSCLC patients respond to these agents. Furthermore, although immunotherapy is usually well tolerated, some patients experience severe immune-related adverse events (irAEs). Liquid biopsy is a non-invasive diagnostic procedure involving the isolation of circulating biomarkers, such as circulating tumor cells (CTC), cell-free DNA (cfDNA), and microRNAs (miRNAs). Thanks to recent advances in technologies, such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR), liquid biopsy has become a useful tool to provide baseline information on the tumor, and to monitor response to treatments. This review highlights the potential role of liquid biomarkers in the selection of NSCLC patients who could respond to immunotherapy, and in the identification of patients who are most likely to experience irAEs, in order to guide improvements in care.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 502
Author(s):  
David Dora ◽  
Christopher Rivard ◽  
Hui Yu ◽  
Shivaun Lueke Pickard ◽  
Viktoria Laszlo ◽  
...  

This study aims to characterize tumor-infiltrating macrophages (TAMs), myeloid-derived suppressor cells (MDSC), and the related molecular milieu regulating anti-tumor immunity in limited-stage neuroendocrine (NE)-high and NE-low small cell lung cancer. Primary tumors and matched lymph node (LN) metastases of 32 resected, early-stage SCLC patients were analyzed by immunohistochemistry (IHC) with antibodies against pan-macrophage marker CD68, M2-macrophage marker CD163, and MDSC marker CD33. Area-adjusted cell counting on TMAs showed that TAMs are the most abundant cell type in the TME, and their number in tumor nests exceeds the number of CD3 + T-cells (64% vs. 38% in NE-low and 71% vs. 18% in NE-high). Furthermore, the ratio of CD163-expressing M2-polarized TAMs in tumor nests was significantly higher in NE-low vs. NE-high tumors (70% vs. 31%). TAM density shows a strong positive correlation with CD45 and CD3 in tumor nests, but not in the stroma. fGSEA analysis on a targeted RNAseq oncological panel of 2560 genes showed that NE-high tumors exhibited increased enrichment in pathways related to cell proliferation, whereas in NE-low tumors, immune response pathways were significantly upregulated. Interestingly, we identified a subset of NE-high tumors representing an immune-oasis phenotype, but with a different gene expression profile compared to NE-low tumors. In contrast, we found that a limited subgroup of NE-low tumors is immune-deserted and express distinct cellular pathways from NE-high tumors. Furthermore, we identified potential molecular targets based on our expression data in NE-low and immune-oasis tumor subsets, including CD70, ANXA1, ITGB6, TP63, IFI27, YBX3 and CXCR2.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1634
Author(s):  
Lavinia Monaco ◽  
Maria Gemelli ◽  
Irene Gotuzzo ◽  
Matteo Bauckneht ◽  
Cinzia Crivellaro ◽  
...  

Immune-checkpoint inhibitors (ICIs) have been proven to have great efficacy in non-small cell lung cancer (NSCLC) as single agents or in combination therapy, being capable to induce deep and durable remission. However, severe adverse events may occur and about 40% of patients do not benefit from the treatment. Predictive factors of response to ICIs are needed in order to customize treatment. The aim of this study is to evaluate the correlation between quantitative positron emission tomography (PET) parameters defined before starting ICI therapy and responses to treatment and patient outcome. We retrospectively analyzed 92 NSCLC patients treated with nivolumab, pembrolizumab or atezolizumab. Basal PET/computed tomography (CT) scan parameters (whole-body metabolic tumor volume—wMTV, total lesion glycolysis—wTLG, higher standardized uptake volume maximum and mean—SUVmax and SUVmean) were calculated for each patient and correlated with outcomes. Patients who achieved disease control (complete response + partial response + stable disease) had significantly lower MTV median values than patients who had not (progressive disease) (77 vs. 160.2, p = 0.039). Furthermore, patients with MTV and TLG values lower than the median values had improved OS compared to patients with higher MTV and TLG (p = 0.03 and 0.05, respectively). No relation was found between the other parameters and outcome. In conclusion, baseline metabolic tumor burden, measured with MTV, might be an independent predictor of treatment response to ICI and a prognostic biomarker in NSCLC patients.


Sign in / Sign up

Export Citation Format

Share Document