scholarly journals Bronchoscopic intratumoural therapies for non-small cell lung cancer

2020 ◽  
Vol 29 (156) ◽  
pp. 200028
Author(s):  
Andrew DeMaio ◽  
Daniel Sterman

The past decade has brought remarkable improvements in the treatment of non-small cell lung cancer (NSCLC) with novel therapies, such as immune checkpoint inhibitors, although response rates remain suboptimal. Direct intratumoural injection of therapeutic agents via bronchoscopic approaches poses the unique ability to directly target the tumour microenvironment and offers several theoretical advantages over systemic delivery including decreased toxicity. Increases in understanding of the tumour microenvironment and cancer immunology have identified many potential options for intratumoural therapy, especially combination immunotherapies. Herein, we review advances in the development of novel bronchoscopic treatments for NSCLC over the past decade with a focus on the potential of intratumoural immunotherapy alone or in combination with systemic treatments.

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2141
Author(s):  
Paola Anna Jablonska ◽  
Joaquim Bosch-Barrera ◽  
Diego Serrano ◽  
Manuel Valiente ◽  
Alfonso Calvo ◽  
...  

Approximately 20% patients with non-small cell lung cancer (NSCLC) present with CNS spread at the time of diagnosis and 25–50% are found to have brain metastases (BMs) during the course of the disease. The improvement in the diagnostic tools and screening, as well as the use of new systemic therapies have contributed to a more precise diagnosis and prolonged survival of lung cancer patients with more time for BMs development. In the past, most of the systemic therapies failed intracranially because of the inability to effectively cross the blood brain barrier. Some of the new targeted therapies, especially the group of tyrosine kinase inhibitors (TKIs) have shown durable CNS response. However, the use of ionizing radiation remains vital in the management of metastatic brain disease. Although a decrease in CNS-related deaths has been achieved over the past decade, many challenges arise from the need of multiple and repeated brain radiation treatments, which carry along not insignificant risks and toxicity. The combination of stereotactic radiotherapy and systemic treatments in terms of effectiveness and adverse effects, such as radionecrosis, remains a subject of ongoing investigation. This review discusses the challenges of the use of radiation therapy in NSCLC BMs in view of different systemic treatments such as chemotherapy, TKIs and immunotherapy. It also outlines the future perspectives and strategies for personalized BMs management.


2021 ◽  
Author(s):  
James Monkman ◽  
Honesty Kim ◽  
Aaron Mayer ◽  
Ahmed Mehdi ◽  
Nicholas Matigian ◽  
...  

Introduction Immunotherapies, such as immune checkpoint inhibitors (ICI) have shown durable benefit in a subset of non-small cell lung cancer (NSCLC) patients. The mechanisms for this are not fully understood, however the composition and activation status of the cellular milieu contained within the tumour microenvironment (TME) is becomingly increasingly recognised as a driving factor in treatment-refractory disease. Methods Here, we employed multiplex IHC (mIHC), and digital spatial profiling (DSP) to capture the targeted immune proteome and transcriptome of tumour and TME compartments of pre-treatment samples from a 2nd line NSCLC ICI-treated cohort (n=41 patients; n=25 responders, n=16 non-responders). Results We demonstrate by mIHC that the interaction of CD68+ macrophages with PD1+, FoxP3+ cells is significantly enriched in ICI refractory tumours (p=0.012). Our study revealed that patients sensitive to ICI therapy expressed higher levels of IL2 receptor alpha (CD25, p=0.028) within the tumour compartments, which corresponded with the increased expression of IL2 mRNA (p=0.001) within their stroma, indicative of key conditions for ICI efficacy prior to treatment. IL2 mRNA levels within the stroma positively correlated with the expression of pro-apoptotic markers cleaved caspase 9 (p=2e-5) and BAD (p=5.5e-4) and negatively correlated with levels of memory T cells (CD45RO) (p=7e-4). Immuno-inhibitory markers CTLA-4 (p=0.021) and IDO-1 (p=0.023) were also supressed in ICI-responsive patients. Of note, tumour CD44 (p=0.02) was depleted in the response group and corresponded inversely with significantly higher stromal expression of its ligand SPP1 (osteopontin, p=0.008). Analysis of differentially expressed transcripts indicated the potential inhibition of stromal interferon-gamma (IFNγ) activity, as well as estrogen-receptor and Wnt-1 signalling activity within the tumour cells of ICI responsive patients. Cox survival analysis indicated tumour CD44 expression was associated with poorer prognosis (HR=1.61, p=0.01), consistent with its depletion in ICI sensitive patients. Similarly, stromal CTLA-4 (HR=1.78, p=0.003) and MDSC/M2 macrophage marker ARG1 (HR=2.37, p=0.01) were associated with poorer outcome while levels of apoptotic marker BAD (HR=0.5, p=0.01) appeared protective. Interestingly, stromal mRNA for E-selectin (HR=652, p=0.001), CCL17 (HR=70, p=0.006) and MTOR (HR=1065, p=0.008) were highly associated with poorer outcome, indicating pro-tumourigenic features in the tumour microenvironment that may facilitate ICI resistance. Conclusions Through multi-modal approaches, we have dissected the characteristics of NSCLC and provide evidence for the role of IL2 and stromal activation by osteopontin in the efficacy of current generations of ICI therapy. The enrichment of SPP1 in the stroma of ICI sensitive patients in our data is a novel finding, indicative of stromal activation that may aid immune cell survival and activity despite no clear association with increased levels of immune infiltrate.


2019 ◽  
Author(s):  
Roberta Poli ◽  
Clement Dumont ◽  
Lisa Pietrogiovanna ◽  
Vincent Servois ◽  
Sophie Beaucaire-Danel ◽  
...  

2021 ◽  
Vol 16 (3) ◽  
pp. S300-S301
Author(s):  
M. Peravali ◽  
C. Gomes-Lima ◽  
E. Tefera ◽  
M. Baker ◽  
M. Sherchan ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1794
Author(s):  
Alice Indini ◽  
Erika Rijavec ◽  
Francesco Grossi

Immune checkpoint inhibitors (ICIs) targeting the programmed cell death (PD)-1 protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, have revolutionized the management of patients with advanced non-small cell lung cancer (NSCLC). Unfortunately, only a small portion of NSCLC patients respond to these agents. Furthermore, although immunotherapy is usually well tolerated, some patients experience severe immune-related adverse events (irAEs). Liquid biopsy is a non-invasive diagnostic procedure involving the isolation of circulating biomarkers, such as circulating tumor cells (CTC), cell-free DNA (cfDNA), and microRNAs (miRNAs). Thanks to recent advances in technologies, such as next-generation sequencing (NGS) and digital polymerase chain reaction (dPCR), liquid biopsy has become a useful tool to provide baseline information on the tumor, and to monitor response to treatments. This review highlights the potential role of liquid biomarkers in the selection of NSCLC patients who could respond to immunotherapy, and in the identification of patients who are most likely to experience irAEs, in order to guide improvements in care.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1634
Author(s):  
Lavinia Monaco ◽  
Maria Gemelli ◽  
Irene Gotuzzo ◽  
Matteo Bauckneht ◽  
Cinzia Crivellaro ◽  
...  

Immune-checkpoint inhibitors (ICIs) have been proven to have great efficacy in non-small cell lung cancer (NSCLC) as single agents or in combination therapy, being capable to induce deep and durable remission. However, severe adverse events may occur and about 40% of patients do not benefit from the treatment. Predictive factors of response to ICIs are needed in order to customize treatment. The aim of this study is to evaluate the correlation between quantitative positron emission tomography (PET) parameters defined before starting ICI therapy and responses to treatment and patient outcome. We retrospectively analyzed 92 NSCLC patients treated with nivolumab, pembrolizumab or atezolizumab. Basal PET/computed tomography (CT) scan parameters (whole-body metabolic tumor volume—wMTV, total lesion glycolysis—wTLG, higher standardized uptake volume maximum and mean—SUVmax and SUVmean) were calculated for each patient and correlated with outcomes. Patients who achieved disease control (complete response + partial response + stable disease) had significantly lower MTV median values than patients who had not (progressive disease) (77 vs. 160.2, p = 0.039). Furthermore, patients with MTV and TLG values lower than the median values had improved OS compared to patients with higher MTV and TLG (p = 0.03 and 0.05, respectively). No relation was found between the other parameters and outcome. In conclusion, baseline metabolic tumor burden, measured with MTV, might be an independent predictor of treatment response to ICI and a prognostic biomarker in NSCLC patients.


Sign in / Sign up

Export Citation Format

Share Document