scholarly journals Paramecium Polycomb Repressive Complex 2 physically interacts with the small RNA binding PIWI protein to repress transposable elements

2021 ◽  
Author(s):  
Caridad Miro Pina ◽  
Takayuki Kawaguchi ◽  
Olivia Charmant ◽  
Audrey Michaud ◽  
Isadora Cohen ◽  
...  

Polycomb Repressive Complex 2 (PRC2) maintains transcriptionally silent genes in a repressed state via deposition of histone H3 K27 trimethyl (me3) marks. PRC2 has also been implicated in silencing transposable elements (TEs) yet how PRC2 is targeted to TEs remains unclear. To address this question, we performed tandem affinity purification combined with mass spectrometry and identified proteins that physically interact with the Paramecium Enhancer-of-zeste Ezl1 enzyme, which catalyzes H3K9me3 and H3K27me3 deposition at TEs. We show that the Paramecium PRC2 core complex comprises four subunits, each required in vivo for catalytic activity. We also identify PRC2 cofactors, including the RNA interference (RNAi) effector Ptiwi09, which are necessary to target H3K9me3 and H3K27me3 to TEs. We find that the physical interaction between PRC2 and the RNAi pathway is mediated by a RING finger protein and that small RNA recruitment of PRC2 to TEs is analogous to the small RNA recruitment of H3K9 methylation SU(VAR)3-9 enzymes.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yicheng Long ◽  
Ben Bolanos ◽  
Lihu Gong ◽  
Wei Liu ◽  
Karen J Goodrich ◽  
...  

Polycomb repressive complex 2 (PRC2) is a key chromatin modifier responsible for methylation of lysine 27 in histone H3. PRC2 has been shown to interact with thousands of RNA species in vivo, but understanding the physiological function of RNA binding has been hampered by the lack of separation-of-function mutants. Here, we use comprehensive mutagenesis and hydrogen deuterium exchange mass spectrometry (HDX-MS) to identify critical residues for RNA interaction in PRC2 core complexes from Homo sapiens and Chaetomium thermophilum, for which crystal structures are known. Preferential binding of G-quadruplex RNA is conserved, surprisingly using different protein elements. Key RNA-binding residues are spread out along the surface of EZH2, with other subunits including EED also contributing, and missense mutations of some of these residues have been found in cancer patients. The unusual nature of this protein-RNA interaction provides a paradigm for other epigenetic modifiers that bind RNA without canonical RNA-binding motifs.


2016 ◽  
Author(s):  
Alex M. Tamburino ◽  
Ebru Kaymak ◽  
Shaleen Shrestha ◽  
Amy D. Holdorf ◽  
Sean P. Ryder ◽  
...  

SUMMARYInteractions between RNA binding protein (RBP) and mRNAs are critical to post-transcriptional gene regulation. Eukaryotic genomes encode thousands of mRNAs and hundreds of RBPs. However, in contrast to interactions between transcription factors (TFs) and DNA, the interactome between RBPs and RNA has been explored for only a small number of proteins and RNAs. This is largely because the focus has been on using ‘protein-centered’ (RBP-to-RNA) interaction mapping methods that identify the RNAs with which an individual RBP interacts. While powerful, these methods cannot as of yet be applied to the entire RBPome. Moreover, it may be desirable for a researcher to identify the repertoire of RBPs that can interact with an mRNA of interest – in a ‘gene-centered’ manner, yet few such techniques are available. Here, we present Protein-RNA Interaction Mapping Assay (PRIMA) with which an RNA ‘bait’ can be tested versus multiple RBP ‘preys’ in a single experiment. PRIMA is a translation-based assay that examines interactions in the yeast cytoplasm, the cellular location of mRNA translation. We show that PRIMA can be used with small RNA elements, as well as with full-length Caenorhabditis elegans 3′UTRs. PRIMA faithfully recapitulates numerous well-characterized RNA-RBP interactions and also identified novel interactions, some of which were confirmed in vivo. We envision that PRIMA will provide a complementary tool to expand the depth and scale with which the RNA-RBP interactome can be explored.


2020 ◽  
Vol 117 (26) ◽  
pp. 15316-15321 ◽  
Author(s):  
Xiaofeng Fang ◽  
Zhe Wu ◽  
Oleg Raitskin ◽  
Kimberly Webb ◽  
Philipp Voigt ◽  
...  

Noncoding RNA plays essential roles in transcriptional control and chromatin silencing. AtArabidopsis thaliana FLC,antisense transcription quantitatively influences transcriptional output, but the mechanism by which this occurs is still unclear. Proximal polyadenylation of the antisense transcripts by FCA, an RNA-binding protein that physically interacts with RNA 3′ processing factors, reducesFLCtranscription. This process genetically requires FLD, a homolog of the H3K4 demethylase LSD1. However, the mechanism linking RNA processing to FLD function had not been established. Here, we show that FLD tightly associates with LUMINIDEPENDENS (LD) and SET DOMAIN GROUP 26 (SDG26) in vivo, and, together, they prevent accumulation of monomethylated H3K4 (H3K4me1) over theFLCgene body. SDG26 interacts with the RNA 3′ processing factor FY (WDR33), thus linking activities for proximal polyadenylation of the antisense transcripts to FLD/LD/SDG26-associated H3K4 demethylation. We propose this demethylation antagonizes an active transcription module, thus reducing H3K36me3 accumulation and increasing H3K27me3. Consistent with this view, we show that Polycomb Repressive Complex 2 (PRC2) silencing is genetically required by FCA to repressFLC. Overall, our work provides insights into RNA-mediated chromatin silencing.


2004 ◽  
Vol 78 (23) ◽  
pp. 13153-13162 ◽  
Author(s):  
Keum S. Choi ◽  
Akihiro Mizutani ◽  
Michael M. C. Lai

ABSTRACT Several cellular proteins, including several heterogeneous nuclear ribonucleoproteins (hnRNPs), have been shown to function as regulatory factors for mouse hepatitis virus (MHV) RNA synthesis as a result of their binding to the 5′ and 3′ untranslated regions (UTRs) of the viral RNA. Here, we identified another cellular protein, p70, which has been shown by UV cross-linking to bind both the positive- and negative-strand UTRs of MHV RNA specifically. We purified p70 with a a one-step RNA affinity purification procedure with the biotin-labeled 5′-UTR. Matrix-assisted laser desorption ionization (MALDI)-mass spectrometry identified it as synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP). SYNCRIP is a member of the hnRNP family and localizes largely in the cytoplasm. The p70 was cross-linked to the MHV positive- or negative-strand UTR in vitro and in vivo. The bacterially expressed SYNCRIP was also able to bind to the 5′-UTR of both strands. The SYNCRIP-binding site was mapped to the leader sequence of the 5′-UTR, requiring the UCUAA repeat sequence. To investigate the functional significance of SYNCRIP in MHV replication, we expressed a full-length or a C-terminally truncated form of SYNCRIP in mammalian cells expressing the MHV receptor. The overexpression of either form of SYNCRIP inhibited syncytium formation induced by MHV infection. Furthermore, downregulation of the endogenous SYNCRIP with a specific short interfering RNA delayed MHV RNA synthesis; in contrast, overexpression or downregulation of SYNCRIP did not affect MHV translation. These results suggest that SYNCRIP may be directly involved in MHV RNA replication as a positive regulator. This study identified an additional cellular hnRNP as an MHV RNA-binding protein potentially involved in viral RNA synthesis.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gregory M Davis ◽  
Shikui Tu ◽  
Joshua WT Anderson ◽  
Rhys N Colson ◽  
Menachem J Gunzburg ◽  
...  

Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 is a bona fide RNA binding protein and, along with RNA-seq data point to a small RNA independent role for NHL-2 in regulating transcripts at the level of RNA stability. Collectively, our data implicate NHL-2 as an essential hub of gene regulatory activity in both the germline and soma.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 610-610
Author(s):  
Etienne Danis ◽  
Taylor Yamauchi ◽  
Kristen Echanique ◽  
Jessica Haladyna ◽  
Huafeng Xie ◽  
...  

Abstract Polycomb Repressive Complex 2 (PRC2) is a multi-protein complex with important roles in development and cancer. Both hyper- and hypoactivity of PRC2 are associated with blood-related malignancies. Activating mutations of the PRC2 methyltransferase EZH2 have been found in human B-lineage lymphomas. Inactivating mutations of PRC2 components EZH2, EED and SUZ12 have been described in early T-cell Precursor ALL (ETP-ALL) and inactivating PRC2-alterations are found in Myelodysplastic and Myeloproliferative Syndromes. The mechanisms underlying this paradox are incompletely understood. We here investigate the context dependent role of PRC2 in murine models. We initially studied PRC2 in normal hematopoiesis: Chip-seq analysis of the PRC2-mediated H3K27me3 chromatin mark demonstrates that many genes highly expressed in immature hematopoiesis gain H3K27me3 in the developmental transition from more immature Lin-Sca1+Kit+ (LSK) cells to lineage committed Granulocyte Macrophage Progenitors (GMPs). Transcription of these genes is enriched in EZH2ko GMP compared to EZH2ffGMP by Gene Set Enrichment Analysis (GSEA). These data suggest that PRC2 is important for the silencing of immature gene expression programs in the developmental transition from LSK to GMP. We next analyzed the role of PRC2 in two murine models of acute leukemia: MLL-AF9 driven leukemia, and a model of early T-cell precursor T-ALL (ETP-ALL). In MLL-AF9 leukemia, we previously found that inactivation of Eed completely abrogate leukemogenesis in vitro and in vivo. We now report that genetic inactivation of the tumor suppressor Cdkn2a (a canonical PRC2 target) partially rescued MLL-AF9 mediated leukemia in vitro and in vivo. However, Cdkn2akoEEDko MLL-AF9 leukemia remained compromised. In vitro growth was reduced to approximately 10% of Eedff controls. While control MLL-AF9 leukemia developed in vivo in 100% of the recipients, Cdkn2akoEEDkoMLL-AF9 leukemia developed with significantly prolonged latency and incomplete penetrance (25%). RNAseq analysis revealed that high level expression of genes with established roles in MLL-AF9 leukemia such as HoxA9, Cdk6 and Jmjd1c unexpectedly depends on Eed. These data are in keeping with the absence of alterations in PRC2-components in human MLL-rearranged leukemia. In contrast, PRC2 core components (EZH2/EED/SUZ12) are deleted or mutated in > 40% of ETP-ALL. ETP-ALL also often has direct or indirect activation of the RAS-pathway, and carries frequent deletions of the CDKN2A locus. To model the effects of EED and EZH2-inactivation in ETP-ALL, we established Cdkn2akoEedff vs Cdkn2akoEedko, and Cdkn2akoEzh2ff vs Cdkn2akoEZH2koleukemias by transduction with NRASQ61K followed by expansion on OP9DL1 stroma cells to activate T-lineage differentiation via Notch-signaling. Cdkn2ako NRASQ61K leukemia showed an immunophenotype similar to human ETP-ALL (positive for c-Kit, CD5 and myeloid markers and mostly negative for CD4/8). Inactivation of Eed or Ezh2 in this model led to a shortening of latency (p=0.03 for Eed, p=0.0001 for Ezh2). RNAseq revealed enrichment of genes associated with murine DN1 thymocytes and with human ETP-ALL in Eedko vs Eedff Cdkn2ako NRASQ61K leukemia. These genesets showed even more pronounced enrichment in Ezh2kocompared to Ezh2ff Cdkn2ako NRASQ61K leukemia. Genes highly expressed in early hematopoiesis were enriched in Eedko and Ezh2ko cells in both, the MLL-AF9 and NRASQ61K leukemia models. However, there was an opposing effect on HoxA9 gene expression, with PRC2 inactivation leading to decreased HoxA9 expression in MLL-AF9, and increased HoxA9 expression in Cdkn2ako NRASQ61K leukemia. Decreased HoxA9 has been shown to impair MLL-AF9 leukemia growth. To test the functional significance of elevated HoxA9-levels in the Eedko and EZH2koNRASQ61K leukemias, we co-expressed HoxA9 and NRASQ61K in the presence of intact Eed and Ezh2 loci. Preliminary data suggest that HoxA9 accelerates leukemia development in this setting. Alterations in chromatin modifiers, including PRC2, are frequent in leukemia and lymphoma. Our data demonstrate that manipulation of PRC2 can have opposite effects on leukemia phenotype and expression of key PRC2-repressed genes such as HoxA9 in the context of different tumors. We are currently characterizing the mechanisms leading to divergent outcomes of PRC2 manipulation in MLL-AF9 leukemia compared to NRASQ61K ETP-like leukemia. Disclosures Armstrong: Epizyme : Consultancy.


2014 ◽  
Vol 3 (6) ◽  
pp. 950-960 ◽  
Author(s):  
Jonathan Osborne ◽  
Louise Djapgne ◽  
Bao Quoc Tran ◽  
Young Ah Goo ◽  
Amanda G. Oglesby‐Sherrouse

2013 ◽  
Vol 20 (11) ◽  
pp. 1250-1257 ◽  
Author(s):  
Chen Davidovich ◽  
Leon Zheng ◽  
Karen J Goodrich ◽  
Thomas R Cech

2021 ◽  
Author(s):  
Youssef El Mouali ◽  
Milan Gerovac ◽  
Raminta Mineikaitė ◽  
Jörg Vogel

Abstract FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level.


Sign in / Sign up

Export Citation Format

Share Document