scholarly journals In Vivo Multi-Day Calcium Imaging of CA1 Hippocampus in Freely Moving Rats Reveals a High Preponderance of Place Cells and No Detectable Photobleaching

2021 ◽  
Author(s):  
Hannah S Wirtshafter ◽  
John F Disterhoft

Calcium imaging using GCaMP calcium indicators and miniature microscopes has been used to image cellular populations during long timescales and in different task phases, as well as to determine neuronal circuit topology and organization. Because the hippocampus (HPC) is essential for many tasks of memory, spatial navigation, and learning, calcium imaging of large populations of HPC neurons can provide new insight on cell changes and organization over time during these tasks. To our knowledge, all reported HPC in vivo calcium imaging experiments have been done in mouse. However, rats have many behavioral and physiological experimental advantages over mice, and, due to their larger size, rats are able to support larger implants, thereby enabling the recording of a greater number of cells. In this paper, we present the first in vivo calcium imaging from CA1 hippocampus in freely moving rats. Using GCaMP7c and the UCLA Miniscope, we demonstrate that hundreds of cells (mean 240+-90 cells per session, maximum 428 cells) can reliably be visualized and held across weeks, and that calcium events in these cells are correlated with periods of movement. We additionally show proof of method by showing that an extremely high percent of place cells (82.3%+-8.1%, far surpassing the percent seen during mouse calcium imaging) can be recorded on a navigational task, and that these place cells enable accurately decoding of animal position. Finally, we show that calcium imaging is rats is not prone to photobleaching during hour-long recordings and that cells can be reliably recorded for an hour or more per session. A detailed protocol for this technique, including notes on the numerous parameter changes needed to use Ca2+ in rats, is included in the Materials and Methods section, and implications of these advancements are discussed.

2018 ◽  
Author(s):  
Gal Mishne ◽  
Ronald R. Coifman ◽  
Maria Lavzin ◽  
Jackie Schiller

AbstractRecent advances in experimental methods in neuroscience enable measuring in-vivo activity of large populations of neurons at cellular level resolution. To leverage the full potential of these complex datasets and analyze the dynamics of individual neurons, it is essential to extract high-resolution regions of interest, while addressing demixing of overlapping spatial components and denoising of the temporal signal of each neuron. In this paper, we propose a data-driven solution to these challenges, by representing the spatiotemporal volume as a graph in the image plane. Based on the spectral embedding of this graph calculated across trials, we propose a new clustering method, Local Selective Spectral Clustering, capable of handling overlapping clusters and disregarding clutter. We also present a new nonlinear mapping which recovers the structural map of the neurons and dendrites, and global video denoising. We demonstrate our approach on in-vivo calcium imaging of neurons and apical dendrites, automatically extracting complex structures in the image domain, and denoising and demixing their time-traces.


Physiology ◽  
2007 ◽  
Vol 22 (6) ◽  
pp. 358-365 ◽  
Author(s):  
Werner Göbel ◽  
Fritjof Helmchen

Spatiotemporal activity patterns in local neural networks are fundamental to brain function. Network activity can now be measured in vivo using two-photon imaging of cell populations that are labeled with fluorescent calcium indicators. In this review, we discuss basic aspects of in vivo calcium imaging and highlight recent developments that will help to uncover operating principles of neural circuits.


2018 ◽  
Author(s):  
Hod Dana ◽  
Yi Sun ◽  
Boaz Mohar ◽  
Brad Hulse ◽  
Jeremy P. Hasseman ◽  
...  

AbstractCalcium imaging with genetically encoded calcium indicators (GECIs) is routinely used to measure neural activity in intact nervous systems. GECIs are frequently used in one of two different modes: to track activity in large populations of neuronal cell bodies, or to follow dynamics in subcellular compartments such as axons, dendrites and individual synaptic compartments. Despite major advances, calcium imaging is still limited by the biophysical properties of existing GECIs, including affinity, signal-to-noise ratio, rise and decay kinetics, and dynamic range. Using structure-guided mutagenesis and neuron-based screening, we optimized the green fluorescent protein-based GECI GCaMP6 for different modes of in vivo imaging. The jGCaMP7 sensors provide improved detection of individual spikes (jGCaMP7s,f), imaging in neurites and neuropil (jGCaMP7b), and tracking large populations of neurons using 2-photon (jGCaMP7s,f) or wide-field (jGCaMP7c) imaging.


2019 ◽  
Vol 13 ◽  
Author(s):  
Tim Indersmitten ◽  
Michael J. Schachter ◽  
Stephanie Young ◽  
Natalie Welty ◽  
Stephani Otte ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
William D. Marks ◽  
Hisayuki Osanai ◽  
Jun Yamamoto ◽  
Sachie K. Ogawa ◽  
Takashi Kitamura

Abstract The hippocampus has been known to process temporal information as part of memory formation. While time cells have been observed in the hippocampus and medial entorhinal cortex, a number of the behavioral tasks used present potential confounds that may cause some contamination of time cell observations due to animal movement. Here, we report the development of a novel nose poke-based temporal discrimination task designed to be used with in vivo calcium imaging for the analysis of hippocampal time cells in freely moving mice. First, we developed a ten second held nose poke paradigm for use in mice to deliver a purer time metric for the analysis of time cell activity in hippocampus CA1. Second, we developed a temporal discrimination task that involves the association of held nose poke durations of differing lengths with differential spatial cues presented in arms on a linear I-maze. Four of five mice achieved successful temporal discrimination within three weeks. Calcium imaging has been successfully performed in each of these tasks, with time cell activity being detected in the 10s nose poke task, and calcium waves being observed in discrete components of the temporal discrimination task. The newly developed behavior tasks in mice serve as novel tools to accelerate the study of time cell activity and examine the integration of time and space in episodic memory formation.


2019 ◽  
Author(s):  
Peter Ledochowitsch ◽  
Lawrence Huang ◽  
Ulf Knoblich ◽  
Michael Oliver ◽  
Jerome Lecoq ◽  
...  

AbstractMultiphoton calcium imaging is commonly used to monitor the spiking of large populations of neurons. Recovering action potentials from fluorescence necessitates calibration experiments, often with simultaneous imaging and cell-attached recording. Here we performed calibration for imaging conditions matching those of the Allen Brain Observatory. We developed a novel crowd-sourced, algorithmic approach to quality control. Our final data set was 50 recordings from 35 neurons in 3 mouse lines. Our calibration indicated that 3 or more spikes were required to produce consistent changes in fluorescence. Moreover, neither a simple linear model nor a more complex biophysical model accurately predicted fluorescence for small numbers of spikes (1-3). We observed increases in fluorescence corresponding to prolonged depolarizations, particularly in Emx1-IRES-Cre mouse line crosses. Our results indicate that deriving spike times from fluorescence measurements may be an intractable problem in some mouse lines.


Sign in / Sign up

Export Citation Format

Share Document