scholarly journals Genome survey sequencing of wild cotton (Gossypium robinsonii) reveals insights into proteomic responses of pollen to extreme heat

2021 ◽  
Author(s):  
Farhad Masoomi-Aladizgeh ◽  
Karthik Shantharam Kamath ◽  
Paul A. Haynes ◽  
Brian J. Atwell

ABSTRACTHeat stress specifically affects fertility by impairing pollen viability but cotton wild relatives successfully reproduce in hot savannas where they evolved. An Australian heat-tolerant cotton (Gossypium robinsonii) was exposed to heat events during pollen development, then mature pollen was subjected to deep proteomic analysis using 57,023 predicted genes from a genomic database we assembled for the same species. Three stages of pollen development, including tetrads, uninucleate and binucleate microspores were exposed to 36°C or 40°C for 5 d and the resulting mature pollen was collected at anthesis (p-TE, p-UN and p-BN, respectively). Using SWATH-MS proteomic analysis, 2,704 proteins were identified and quantified across all pollen samples analyzed. Proteins predominantly decreased in abundance at all stages in response to heat, particularly after exposure of tetrads to 40°C. Functional enrichment analyses demonstrated that extreme heat increased the abundance of proteins that contributed to increased mRNA splicing via spliceosome, initiation of cytoplasmic translation and protein refolding in p-TE40. However, other functional categories that contributed to intercellular transport were inhibited in p-TE40, linked potentially to Rab proteins. We ascribe the resilience of reproductive processes in G. robinsonii at temperatures up to 40°C, relative to commercial cotton, to a targeted reduction in protein transport.

2007 ◽  
Vol 132 (6) ◽  
pp. 777-782 ◽  
Author(s):  
Zhiyong Hu ◽  
Min Zhang ◽  
Qigen Wen ◽  
Jie Wei ◽  
Hualin Yi ◽  
...  

Seedlessness is of commercial importance in citrus (Citrus L.). Seedless ‘Ougan’ mandarin (C. suavissima) was selected from a bud sport mutation that occurred in ‘Ougan’ mandarin. We analyzed their pollen viability through KI-I2 and FDA staining, and examined the anthers of wild-type (seedy) and seedless mutant ‘Ougan’ mandarin using histological and cytochemical methods to characterize the process of pollen development. No pollen fertility was detected in this mutant. Pollen abortion in anthers of the mutant occurred at the tetrad stage of microspore development, and almost all the tetrads were abnormal. The mutant had heterogeneous microspore populations, including monads, dyads, triads, tetrads, and polyads in the same microsporangium. Pollen grain number per anther of the mutant was 21.9% less than the wild type. Morphology of mature pollen grains using SEM showed that the shape of mature pollen grains from both wild type and mutant is similar, but the microsporangia of the latter contained pollen grains of more variable sizes. At the early mature pollen grain stage, abundant starch grains and lipids appeared in the wild type's pollen, but fewer amounts were observed in the mutant. Moreover, the tapetal cells of the wild type accumulated lipids, but not those of the mutant. Results indicated that the abnormal development of the microspore led to pollen abortion in the mutant, and this could be the reason for its seedlessness. However, the genetic reasons for the aberrant tetrads are not clear and are under investigation.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 945-950
Author(s):  
Weiping Zhong ◽  
Zhoujun Zhu ◽  
Fen Ouyang ◽  
Qi Qiu ◽  
Xiaoming Fan ◽  
...  

The normal development of anthers and the formation of functional pollen are the prerequisites for successful pollination and fertilization. In this study, we observed dynamic changes in inflorescence and anther development in the chinquapin (Castanea henryi) using stereomicroscopy, light microscopy, and transmission electron microscopy. We found that cytokinesis during meiosis in microsporocytes was of the simultaneous type, and that the tetrads were mainly tetrahedral. Mature pollen grains contained two cells with three germ pores. The anther wall was of the basic type and composed of epidermis, endothecium, middle layers, and tapetum. Mature anthers had no middle layer and tapetum. The tapetum was of the glandular type. At the early microspore stage, a large number of starch granules appeared in the endothecium, which was deformed at the late microspore stage. Lipid droplets appeared in tapetum during the early microspore stage, and a few lipid droplets were still found during tapetum degeneration. The mature pollen accumulated a large amount of starch and lipids. These findings demonstrated that the anther wall provides nutrients and protection for pollen development. There is relatively stable correspondence between the external morphological characteristics of male flowers and internal structure of anther development.


2021 ◽  
Author(s):  
Saeid Babaei ◽  
Mohan B. Singh ◽  
Prem L Bhalla

Circular RNAs (circRNAs) are covalently closed long non-coding RNA (lncRNA) molecules generated by the back-splicing of exons from linear precursor mRNAs. Though linear lncRNAs have been shown to play important regulatory roles in diverse biological and developmental processes, little is known about the role of their circular counterparts. In this study, we have performed high-throughput RNA sequencing to delineate the expression profile and potential function of circRNAs during the five stages of pollen development in Brassica rapa. A total of 1180 circRNAs were detected in pollen development, of which 367 showed stage-specific expression patterns. Functional enrichment and metabolic pathway analysis showed that the parent genes of circRNAs were mainly involved in pollen-related molecular and biological processes such as mitotic and meiosis cell division, DNA processes, protein synthesis, protein modification, and polysaccharide biosynthesis. Moreover, by predicting the circRNA-miRNA network from our differentially expressed circRNAs, we found 88 circRNAs with potential miRNA binding sites suggesting their role in post-transcriptional regulation of the genes. Finally, we confirmed the back-splicing sites of 9 randomly selected circRNAS using divergent primers and Sanger sequencing. Our study presents the first systematic analysis of circular RNAs during pollen development and forms the basis of future studies for unlocking complex gene regulatory networks underpinning reproduction in flowering plants.


2001 ◽  
Vol 155 (6) ◽  
pp. 877-884 ◽  
Author(s):  
Benjamin Short ◽  
Christian Preisinger ◽  
Roman Körner ◽  
Robert Kopajtich ◽  
Olwyn Byron ◽  
...  

Membrane traffic between the endoplasmic reticulum (ER) and Golgi apparatus and through the Golgi apparatus is a highly regulated process controlled by members of the rab GTPase family. The GTP form of rab1 regulates ER to Golgi transport by interaction with the vesicle tethering factor p115 and the cis-Golgi matrix protein GM130, also part of a complex with GRASP65 important for the organization of cis-Golgi cisternae. Here, we find that a novel coiled-coil protein golgin-45 interacts with the medial-Golgi matrix protein GRASP55 and the GTP form of rab2 but not other Golgi rab proteins. Depletion of golgin-45 disrupts the Golgi apparatus and causes a block in secretory protein transport. These results demonstrate that GRASP55 and golgin-45 form a rab2 effector complex on medial-Golgi essential for normal protein transport and Golgi structure.


1996 ◽  
Vol 74 (5) ◽  
pp. 788-795 ◽  
Author(s):  
D. Roques ◽  
P. Feldmann

A study of the histocytological characteristics of anthers and pollen development of fertile male genotypes of Saccharum spontaneum L. support the division of microsporogenesis into nine distinct stages: premeiosis, meiosis and tetrad, young uninucleate microsporal stage, median uninucleate microsporal stage, median vacuolized uninucleate microsporal stage, late vacuolized uninucleate microsporal stage, first pollinic mitosis, second pollinic mitosis, mature pollen. Pollen grains are subspherical, monosporal, operculated with verrucose type ornamentations. A secretory type tapetum, present from the very first microsporal stages, is covered with orbicules persisting until anthesis. Keywords: Saccharum spontaneum, microsporogenesis, pollen, tapetum. [Journal translation]


1992 ◽  
Vol 119 (4) ◽  
pp. 749-761 ◽  
Author(s):  
E J Tisdale ◽  
J R Bourne ◽  
R Khosravi-Far ◽  
C J Der ◽  
W E Balch

We have examined the role of ras-related rab proteins in transport from the ER to the Golgi complex in vivo using a vaccinia recombinant T7 RNA polymerase virus to express site-directed rab mutants. These mutations are within highly conserved domains involved in guanine nucleotide binding and hydrolysis found in ras and all members of the ras superfamily. Substitutions in the GTP-binding domains of rab1a and rab1b (equivalent to the ras 17N and 116I mutants) resulted in proteins which were potent trans dominant inhibitors of vesicular stomatitis virus glycoprotein (VSV-G protein) transport between the ER and cis Golgi complex. Immunofluorescence analysis indicated that expression of rab1b121I prevented delivery of VSV-G protein to the Golgi stack, which resulted in VSV-G protein accumulation in pre-Golgi punctate structures. Mutants in guanine nucleotide exchange or hydrolysis of the rab2 protein were also strong trans dominant transport inhibitors. Analogous mutations in rab3a, rab5, rab6, and H-ras did not inhibit processing of VSV-G to the complex, sialic acid containing form diagnostic of transport to the trans Golgi compartment. We suggest that at least three members of the rab family (rab1a, rab1b, and rab2) use GTP hydrolysis to regulate components of the transport machinery involved in vesicle traffic between early compartments of the secretory pathway.


2016 ◽  
Vol 17 (9) ◽  
pp. 1475 ◽  
Author(s):  
Xiao-Ling Zhang ◽  
Jin Zhang ◽  
Ying-Hua Guo ◽  
Pei Sun ◽  
Hui-Xia Jia ◽  
...  

Author(s):  
Jiemeng Xu ◽  
Stuart Jansma ◽  
Mieke Wolters-Arts ◽  
Peter de Groot ◽  
Ivo Rieu

Crop reproductive success is significantly challenged by heatwaves, which are increasing in frequency and severity globally. A major reason is reduced male fertility due to deviations in pollen development, but the mechanism behind this is not well understood. Here, long-term mild heat (LTMH) treatment, mimicking a heatwave, was applied locally to flowers or to whole plants and followed up by cytological, transcriptomic and biochemical analyses. LTMH was shown to act directly on the flowers and not via a systemic effect on other plant tissue. The meiosis to early microspore stage was the most sensitive to LTMH and three days of exposure around this period was sufficient to significantly reduce pollen viability. Extensive cytological analysis showed that abnormalities in pollen development could first be observed after pollen mitosis I, while tapetum development appeared unaffected. Transcriptomic and biochemical analyses suggested that pollen development suffered from tapetal ER stress and that there was a limited role for oxidative stress. These characteristics differentiate the response of developing anthers and pollen to LTMH from the response to severe heat stress.


Sign in / Sign up

Export Citation Format

Share Document