scholarly journals BiomeHorizon: visualizing microbiome time series data in R

2021 ◽  
Author(s):  
Isaac Fink ◽  
Richard J. Abdill ◽  
Ran Blekhman ◽  
Laura Grieneisen

AbstractSummaryA key aspect of microbiome research is analysis of longitudinal dynamics using time series data. A method to visualize both the proportional and absolute change in the abundance of multiple taxa across multiple subjects over time is needed. We developed BiomeHorizon, an open-source R package that visualizes longitudinal compositional microbiome data using horizon plots.Availability and ImplementationBiomeHorizon is available at https://github.com/blekhmanlab/biomehorizon/ and released under the MIT license. A guide with step-by-step instructions for using the package is provided at https://blekhmanlab.github.io/biomehorizon/. The guide also provides code to reproduce all plots in this [email protected], [email protected], [email protected] informationNone

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hitoshi Iuchi ◽  
Michiaki Hamada

Abstract Time-course experiments using parallel sequencers have the potential to uncover gradual changes in cells over time that cannot be observed in a two-point comparison. An essential step in time-series data analysis is the identification of temporal differentially expressed genes (TEGs) under two conditions (e.g. control versus case). Model-based approaches, which are typical TEG detection methods, often set one parameter (e.g. degree or degree of freedom) for one dataset. This approach risks modeling of linearly increasing genes with higher-order functions, or fitting of cyclic gene expression with linear functions, thereby leading to false positives/negatives. Here, we present a Jonckheere–Terpstra–Kendall (JTK)-based non-parametric algorithm for TEG detection. Benchmarks, using simulation data, show that the JTK-based approach outperforms existing methods, especially in long time-series experiments. Additionally, application of JTK in the analysis of time-series RNA-seq data from seven tissue types, across developmental stages in mouse and rat, suggested that the wave pattern contributes to the TEG identification of JTK, not the difference in expression levels. This result suggests that JTK is a suitable algorithm when focusing on expression patterns over time rather than expression levels, such as comparisons between different species. These results show that JTK is an excellent candidate for TEG detection.


2021 ◽  
Author(s):  
Sadnan Al Manir ◽  
Justin Niestroy ◽  
Maxwell Adam Levinson ◽  
Timothy Clark

Introduction: Transparency of computation is a requirement for assessing the validity of computed results and research claims based upon them; and it is essential for access to, assessment, and reuse of computational components. These components may be subject to methodological or other challenges over time. While reference to archived software and/or data is increasingly common in publications, a single machine-interpretable, integrative representation of how results were derived, that supports defeasible reasoning, has been absent. Methods: We developed the Evidence Graph Ontology, EVI, in OWL 2, with a set of inference rules, to provide deep representations of supporting and challenging evidence for computations, services, software, data, and results, across arbitrarily deep networks of computations, in connected or fully distinct processes. EVI integrates FAIR practices on data and software, with important concepts from provenance models, and argumentation theory. It extends PROV for additional expressiveness, with support for defeasible reasoning. EVI treats any com- putational result or component of evidence as a defeasible assertion, supported by a DAG of the computations, software, data, and agents that produced it. Results: We have successfully deployed EVI for very-large-scale predictive analytics on clinical time-series data. Every result may reference its own evidence graph as metadata, which can be extended when subsequent computations are executed. Discussion: Evidence graphs support transparency and defeasible reasoning on results. They are first-class computational objects, and reference the datasets and software from which they are derived. They support fully transparent computation, with challenge and support propagation. The EVI approach may be extended to include instruments, animal models, and critical experimental reagents.


2019 ◽  
Vol 14 (2) ◽  
pp. 182-207 ◽  
Author(s):  
Benoît Faye ◽  
Eric Le Fur

AbstractThis article tests the stability of the main hedonic wine price coefficients over time. We draw on an extensive literature review to identify the most frequently used methodology and define a standard hedonic model. We estimate this model on monthly subsamples of a worldwide auction database of the most commonly exchanged fine wines. This provides, for each attribute, a monthly time series of hedonic coefficients time series data from 2003 to 2014. Using a multivariate autoregressive model, we then study the stability of these coefficients over time and test the existence of structural or cyclical changes related to fluctuations in general price levels. We find that most hedonic coefficients are variable and either exhibit structural or cyclical variations over time. These findings shed doubt on the relevance of both short- and long-run hedonic estimations. (JEL Classifications: C13, C22, D44, G11)


2017 ◽  
Vol 33 (20) ◽  
pp. 3308-3310 ◽  
Author(s):  
Wenbin Guo ◽  
Cristiane P G Calixto ◽  
John W S Brown ◽  
Runxuan Zhang

2011 ◽  
Vol 12 (1) ◽  
pp. 119 ◽  
Author(s):  
Michael Lindner ◽  
Raul Vicente ◽  
Viola Priesemann ◽  
Michael Wibral

2019 ◽  
Author(s):  
Birgit Möller ◽  
Hongmei Chen ◽  
Tino Schmidt ◽  
Axel Zieschank ◽  
Roman Patzak ◽  
...  

AbstractBackground and aimsMinirhizotrons are commonly used to study root turnover which is essential for understanding ecosystem carbon and nutrient cycling. Yet, extracting data from minirhizotron images requires intensive annotation effort. Existing annotation tools often lack flexibility and provide only a subset of the required functionality. To facilitate efficient root annotation in minirhizotrons, we present the user-friendly open source tool rhizoTrak.Methods and resultsrhizoTrak builds on TrakEM2 and is publically available as Fiji plugin. It uses treelines to represent branching structures in roots and assigns customizable status labels per root segment. rhizoTrak offers configuration options for visualization and various functions for root annotation mostly accessible via keyboard shortcuts. rhizoTrak allows time-series data import and particularly supports easy handling and annotation of time series images. This is facilitated via explicit temporal links (connectors) between roots which are automatically generated when copying annotations from one image to the next. rhizoTrak includes automatic consistency checks and guided procedures for resolving conflicts. It facilitates easy data exchange with other software by supporting open data formats.ConclusionsrhizoTrak covers the full range of functions required for user-friendly and efficient annotation of time-series images. Its flexibility and open source nature will foster efficient data acquisition procedures in root studies using minirhizotrons.


Sign in / Sign up

Export Citation Format

Share Document