scholarly journals Distinct neutralizing kinetics and magnitudes elicited by different SARS-CoV-2 variant spikes

2021 ◽  
Author(s):  
Yang Liu ◽  
Jianying Liu ◽  
Jing Zou ◽  
Ping Ren ◽  
Scott C. Weaver ◽  
...  

AbstractThe rapid evolution of SARS-CoV-2 mandates a better understanding of cross-protection between variants after vaccination or infection, but studies directly evaluating such cross-protection are lacking. Here we report that immunization with different variant spikes elicits distinct neutralizing kinetics and magnitudes against other SARS-CoV-2 variants. After immunizing hamsters with wild-type or mutant SARS-CoV-2 bearing variant spikes from Alpha, Beta, Gamma, or Epsilon, the animals developed faster and greater neutralization activities against homologous SARS-CoV-2 variants than heterologous variants, including Delta. The rank of neutralizing titers against different heterologous variants varied, depending on the immunized variant spikes. The differences in neutralizing titers between homologous and heterologous variants were as large as 62-, 15-, and 9.7-fold at days 14, 28, and 45 post-immunization, respectively. Nevertheless, all immunized hamsters were protected from challenges with all SARS-CoV-2 variants, including those exhibiting the lowest neutralizing antibody titers. The results provide insights into the COVID-19 vaccine booster strategies.

2021 ◽  
Author(s):  
Marit J. van Gils ◽  
Ayesha H.A. Lavell ◽  
Karlijn van der Straten ◽  
Brent Appelman ◽  
Ilja Bontjer ◽  
...  

Emerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. We performed a head-to-head comparison of the ability of sera from individuals vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S) to recognize and neutralize the four SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma and Delta). Four weeks after completing the vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of BNT162b2 and mRNA-1273 (median titers of 1891 and 3061, respectively), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (median titers of 241 and 119, respectively). VOCs neutralization was reduced in all vaccine groups, with the largest (5.8-fold) reduction in neutralization being observed against the Beta variant. Overall, the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after the final vaccination.


2021 ◽  
Author(s):  
Jorge C.G. Blanco ◽  
Lori McGinnes-Cullen ◽  
Arash Kamali ◽  
Fatoumata Sylla ◽  
Marina Boukhavalova ◽  
...  

Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life.  In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge (Blanco, et al Journal of Virology 93: e00914-19, https://doi.org/10.1128/JVI.00914-19).  Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization.  We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth.   However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age.  This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy.  The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.


2003 ◽  
Vol 77 (15) ◽  
pp. 8426-8439 ◽  
Author(s):  
Jean-Francois Valarcher ◽  
Julie Furze ◽  
Sara Wyld ◽  
Roy Cook ◽  
Karl-Klaus Conzelmann ◽  
...  

ABSTRACT Alpha/beta interferons (IFN-α/β) are not only a powerful first line of defense against pathogens but also have potent immunomodulatory activities. Many viruses have developed mechanisms of subverting the IFN system to enhance their virulence. Previous studies have demonstrated that the nonstructural (NS) genes of bovine respiratory syncytial virus (BRSV) counteract the antiviral effects of IFN-α/β. Here we demonstrate that, in contrast to wild-type BRSVs, recombinant BRSVs (rBRSVs) lacking the NS proteins, and those lacking NS2 in particular, are strong inducers of IFN-α/β in bovine nasal fibroblasts and bronchoalveolar macrophages. Furthermore, whereas the NS deletion mutants replicated to wild-type rBRSV levels in cells lacking a functional IFN-α/β system, their replication was severely attenuated in IFN-competent cells and in young calves. These results suggest that the NS proteins block the induction of IFN-α/β gene expression and thereby increase the virulence of BRSV. Despite their poor replication in the respiratory tract of young calves, prior infection with virus lacking either the NS1 or the NS2 protein induced serum antibodies and protection against challenge with virulent BRSV. The greater level of protection induced by the NS2, than by the NS1, deletion mutant, was associated with higher BRSV-specific antibody titers and greater priming of BRSV-specific, IFN-γ-producing CD4+ T cells. Since there were no detectable differences in the ability of these mutants to replicate in the bovine respiratory tract, the greater immunogenicity of the NS2 deletion mutant may be associated with the greater ability of this virus to induce IFN-α/β.


2021 ◽  
Author(s):  
Lisa H. Tostanoski ◽  
Lisa E. Gralinski ◽  
David R. Martinez ◽  
Alexandra Schaefer ◽  
Shant H. Mahrokhian ◽  
...  

The global COVID-19 pandemic has sparked intense interest in the rapid development of vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in humans that are important to capture in model systems. We evaluated the immunogenicity and protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine development. We observed that RhAd52 vaccines elicited robust binding and neutralizing antibody titers, which inversely correlated with viral replication after challenge. These data support the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel vaccine candidates and to study the immunologic mechanisms that underscore protection from SARS-CoV-2 challenge in wild-type mice. Importance We have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 (RhAd52) vectors, which exhibits a lower seroprevalence than human and chimpanzee vectors, supporting their development as novel vaccine vectors or as an alternative Ad vector for boosting. We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) virus to i) evaluate the protective efficacy of RhAd52 vaccines and ii) further characterize this mouse-adapted challenge model and probe immune correlates of protection. We demonstrate RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sonia Jangra ◽  
Jeffrey J. Landers ◽  
Raveen Rathnasinghe ◽  
Jessica J. O’Konek ◽  
Katarzyna W. Janczak ◽  
...  

Several SARS-CoV-2 vaccines have received EUAs, but many issues remain unresolved, including duration of conferred immunity and breadth of cross-protection. Adjuvants that enhance and shape adaptive immune responses that confer broad protection against SARS-CoV-2 variants will be pivotal for long-term protection as drift variants continue to emerge. We developed an intranasal, rationally designed adjuvant integrating a nanoemulsion (NE) that activates TLRs and NLRP3 with an RNA agonist of RIG-I (IVT DI). The combination adjuvant with spike protein antigen elicited robust responses to SARS-CoV-2 in mice, with markedly enhanced TH1-biased cellular responses and high virus-neutralizing antibody titers towards both homologous SARS-CoV-2 and a variant harboring the N501Y mutation shared by B1.1.7, B.1.351 and P.1 variants. Furthermore, passive transfer of vaccination-induced antibodies protected naive mice against heterologous viral challenge. NE/IVT DI enables mucosal vaccination, and has the potential to improve the immune profile of a variety of SARS-CoV-2 vaccine candidates to provide effective cross-protection against future drift variants.


2004 ◽  
Vol 78 (17) ◽  
pp. 9190-9202 ◽  
Author(s):  
J. D. Trujillo ◽  
N. M. Kumpula-McWhirter ◽  
K. J. Hötzel ◽  
M. Gonzalez ◽  
W. P. Cheevers

ABSTRACT This study evaluated type-specific and cross-reactive neutralizing antibodies induced by immunization with modified surface glycoproteins (SU) of the 63 isolate of caprine arthritis-encephalitis lentivirus (CAEV-63). Epitope mapping of sera from CAEV-infected goats localized immunodominant linear epitopes in the carboxy terminus of SU. Two modified SU (SU-M and SU-T) and wild-type CAEV-63 SU (SU-W) were produced in vaccinia virus and utilized to evaluate the effects of glycosylation or the deletion of immunodominant linear epitopes on neutralizing antibody responses induced by immunization. SU-M contained two N-linked glycosylation sites inserted into the target epitopes by R539S and E542N mutations. SU-T was truncated at 518A, upstream from the target epitopes, by introduction of termination codons at 519Y and 521Y. Six yearling Saanen goats were immunized subcutaneously with 30 μg of SU-W, SU-M, or SU-T in Quil A adjuvant and boosted at 3, 7, and 16 weeks. SU antibody titers determined by indirect enzyme-linked immunosorbent assay demonstrated anamnestic responses after each boost. Wild-type and modified SU-induced type-specific CAEV-63 neutralizing antibodies and cross-reactive neutralizing antibodies against CAEV-Co, a virus isolate closely related to CAEV-63, and CAEV-1g5, an isolate geographically distinct from CAEV-63, were determined. Immunization with SU-T resulted in altered recognition of SU linear epitopes and a 2.8- to 4.6-fold decrease in neutralizing antibody titers against CAEV-63, CAEV-Co, and CAEV-1g5 compared to titers of SU-W-immunized goats. In contrast, immunization with SU-M resulted in reduced recognition of glycosylated epitopes and a 2.4- to 2.7-fold increase in neutralizing antibody titers compared to titers of SU-W-immunized goats. Thus, the glycosylation of linear immunodominant nonneutralization epitopes, but not epitope deletion, is an effective strategy to enhance neutralizing antibody responses by immunization.


2019 ◽  
Vol 71 (6) ◽  
pp. 1447-1453 ◽  
Author(s):  
Sigrid Gouma ◽  
Seth J Zost ◽  
Kaela Parkhouse ◽  
Angela Branche ◽  
David J Topham ◽  
...  

Abstract Background The H3N2 component of egg-based 2017–2018 influenza vaccines possessed an adaptive substitution that alters antigenicity. Several influenza vaccines include antigens that are produced through alternative systems, but a systematic comparison of different vaccines used during the 2017–2018 season has not been completed. Methods We compared antibody responses in humans vaccinated with Fluzone (egg-based, n = 23), Fluzone High-Dose (egg-based, n = 16), Flublok (recombinant protein–based, n = 23), or Flucelvax (cell-based, n = 23) during the 2017–2018 season. We completed neutralization assays using an egg-adapted H3N2 virus, a cell-based H3N2 virus, wild-type 3c2.A and 3c2.A2 H3N2 viruses, and the H1N1 vaccine strain. We also performed enzyme-linked immunosorbent assays using a recombinant wild-type 3c2.A hemagglutinin. Antibody responses were compared in adjusted analysis. Results Postvaccination neutralizing antibody titers to 3c2.A and 3c2.A2 were higher in Flublok recipients compared with Flucelvax or Fluzone recipients (P < .01). Postvaccination titers to 3c2.A and 3c2.A2 were similar in Flublok and Fluzone High-Dose recipients, though seroconversion rates trended higher in Flublok recipients. Postvaccination titers in Flucelvax recipients were low to all H3N2 viruses tested, including the cell-based H3N2 strain. Postvaccination neutralizing antibody titers to H1N1 were similar among the different vaccine groups. Conclusions These data suggest that influenza vaccine antigen match and dose are both important for eliciting optimal H3N2 antibody responses in humans. Future studies should be designed to determine if our findings directly impact vaccine effectiveness. Clinical Trials Registration NCT03068949.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009856
Author(s):  
Jorge C. G. Blanco ◽  
Lori M. Cullen ◽  
Arash Kamali ◽  
Fatoumata Y. D. Sylla ◽  
Marina S. Boukhvalova ◽  
...  

Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life. In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge. Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization. We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth. However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age. This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy. The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.


1999 ◽  
Vol 73 (11) ◽  
pp. 9669-9672 ◽  
Author(s):  
Guey-Chuen Perng ◽  
Susan M. Slanina ◽  
Ada Yukht ◽  
Homayon Ghiasi ◽  
Anthony B. Nesburn ◽  
...  

ABSTRACT The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) gene is essential for efficient spontaneous reactivation in the rabbit ocular model of HSV-1 latency and reactivation. LAT is also the only viral gene abundantly expressed during latency. Rabbits were ocularly infected with the wild-type HSV-1 strain McKrae or the McKrae-derived LAT null mutantdLAT2903. Serum neutralizing antibody titers were determined at various times during acute and latent infection. The neutralizing antibody titers induced by both viruses increased and were similar throughout the first 45 days after infection (P > 0.05). However, by day 59 postinfection (approximately 31 to 45 days after latency had been established), the neutralizing antibody titers induced by wild-type virus anddLAT2903 diverged significantly (P = 0.0005). The dLAT2903-induced neutralizing antibody titers decreased, while the wild-type virus-induced neutralizing antibody titers continued to increase. A rescuant of dLAT2903, in which spontaneous reactivation was fully restored, induced wild-type neutralizing antibody levels on day 59 postinfection. A second LAT mutant with impaired spontaneous reactivation had neutralizing antibody levels comparable to those of dLAT2903. In contrast to the results obtained in rabbits, in mice, neutralizing antibody titers did not increase over time during latency with any of the viruses. Since LAT is expressed in both rabbits and mice during latency, the difference in neutralizing antibody titers between these animals is unlikely to be due to expression of a LAT protein during latency. In contrast, LAT-positive (LAT+), but not LAT-negative (LAT−), viruses undergo efficient spontaneous reactivation in rabbits, while neither LAT+ nor LAT−viruses undergo efficient spontaneous reactivation in mice. Thus, the increase in neutralizing antibody titers in rabbits latently infected with LAT+ viruses may have been due to continued restimulation of the immune system by spontaneously reactivating virus.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1383
Author(s):  
Juan Shi ◽  
Xiaoxiao Jin ◽  
Yan Ding ◽  
Xiaotao Liu ◽  
Anran Shen ◽  
...  

Multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have spread around the world, but the neutralizing effects of antibodies induced by the existing vaccines have declined, which highlights the importance of developing vaccines against mutant virus strains. In this study, nine receptor-binding domain (RBD) proteins of the SARS-CoV-2 variants (B.1.1.7, B.1.351 and P.1 lineages) were constructed and fused with the Fc fragment of human IgG (RBD-Fc). These RBD-Fc proteins contained single or multiple amino acid substitutions at prevalent mutation points of spike protein, which enabled them to bind strongly to the polyclonal antibodies specific for wild-type RBD and to the recombinant human ACE2 protein. In the BALB/c, mice were immunized with the wild-type RBD-Fc protein first and boosted twice with the indicated mutant RBD-Fc proteins later. All mutant RBD-Fc proteins elicited high-level IgG antibodies and cross-neutralizing antibodies. The RBD-Fc proteins with multiple substitutions tended to induce higher antibody titers and neutralizing-antibody titers than the single-mutant RBD-Fc proteins. Meanwhile, both wild-type RBD-Fc protein and mutant RBD-Fc proteins induced significantly decreased neutralization capacity to the pseudovirus of B.1.351 and P.1 lineages than to the wild-type one. These data will facilitate the design and development of RBD-based subunit vaccines against SARS-COV-2 and its variants.


Sign in / Sign up

Export Citation Format

Share Document