scholarly journals Evolution and functional dynamics of dehydrins in model Brachypodium grasses

2021 ◽  
Author(s):  
Maria Angeles Decena Rodriguez ◽  
Sergio Galvez Rojas ◽  
Federico Agostini ◽  
Ruben Sancho Cohen ◽  
Bruno Contreras Moreira ◽  
...  

Dehydration proteins (dehydrins, DHNs) confer tolerance to water-stress deficit to plants, thus playing a fundamental role in plant response and adaptation to water-deprivation stressful environments. We have performed a comparative genomics and evolutionary study of DHN genes in four model Brachypodium grass species, and a drought-induced functional analysis in 32 ecotypes of the flagship species B. distachyon, to gain insight into the origins and dynamics of these proteins and the correlated drought-mediated phenotypic responses in ecotypes showing different hydric requirements. Genomic sequence analysis detected 10 types of dehydrin genes (Bdhn) across the Brachypodium species, totalling 47 genes. Domain and conserved motif contents of peptides encoded by Bdhn genes revealed eight protein architectures, YSɸK2 being the most common architecture. Bdhn genes were spread across several chromosomes and more frequent in syntenic chromosomes 3 and 4 of B. distachyon, 4 and 5 of B. stacei and 4 of B. sylvaticum. Tandem and segmental duplication events were detected for four Bdhn genes. Selection analysis indicated that all the Bdhn genes were constrained by purifying selection. Three upstream cis-regulatory motifs (BES1, MYB124, ZAT) were consistently detected in several Bdhn genes. Functional analysis in 32 natural accessions of B. distachyon demonstrated that only four Bdhn genes (Bdhn1, Bdhn2, Bdhn3, Bdhn7) were expressed in mature leaves and that all of them were significantly more highly expressed in plants under drought conditions. These genes corresponded to wheat orthologs that were also significantly more expressed under drought stress. Brachypodium dehydrin expression was significantly correlated with drought-response phenotypic traits (plant biomass, leaf carbon and proline contents and WUE increases, leaf water and nitrogen content changes) being more pronounced in drought-tolerant ecotypes. Bdhn expression, associated phenotypic trait changes and climate niche variation did not show significant phylogenetic signal when tested in the B. distachyon genealogical-species tree. By contrast, some of them showed low or marginal significant phylogenetic signal when tested in the B. distachyon Bdhn tree, suggesting that Bdhn gene evolution is partially related to adaptation to drought in this species. Our results demonstrate that dehydrin composition and regulation is a key factor determining the acquisition of water-stress tolerance in grasses.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2664
Author(s):  
Maria Angeles Decena ◽  
Sergio Gálvez-Rojas ◽  
Federico Agostini ◽  
Ruben Sancho ◽  
Bruno Contreras-Moreira ◽  
...  

Dehydration proteins (dehydrins, DHNs) confer tolerance to water-stress deficit in plants. We performed a comparative genomics and evolutionary study of DHN genes in four model Brachypodium grass species. Due to limited knowledge on dehydrin expression under water deprivation stress in Brachypodium, we also performed a drought-induced gene expression analysis in 32 ecotypes of the genus’ flagship species B. distachyon showing different hydric requirements. Genomic sequence analysis detected 10 types of dehydrin genes (Bdhn) across the Brachypodium species. Domain and conserved motif contents of peptides encoded by Bdhn genes revealed eight protein architectures. Bdhn genes were spread across several chromosomes. Selection analysis indicated that all the Bdhn genes were constrained by purifying selection. Three upstream cis-regulatory motifs (BES1, MYB124, ZAT) were detected in several Bdhn genes. Gene expression analysis demonstrated that only four Bdhn1-Bdhn2, Bdhn3, and Bdhn7 genes, orthologs of wheat, barley, rice, sorghum, and maize genes, were expressed in mature leaves of B. distachyon and that all of them were more highly expressed in plants under drought conditions. Brachypodium dehydrin expression was significantly correlated with drought-response phenotypic traits (plant biomass, leaf carbon and proline contents and water use efficiency increases, and leaf water and nitrogen content decreases) being more pronounced in drought-tolerant ecotypes. Our results indicate that dehydrin type and regulation could be a key factor determining the acquisition of water-stress tolerance in grasses.


Rhizosphere ◽  
2021 ◽  
pp. 100367
Author(s):  
Zohreh Ghanbarzadeh ◽  
Hajar Zamani ◽  
Sasan Mohsenzadeh ◽  
Łukasz Marczak ◽  
Maciej Stobiecki ◽  
...  

2021 ◽  
Vol 53 (1) ◽  
pp. 162-188
Author(s):  
Krzysztof Bartoszek ◽  
Torkel Erhardsson

AbstractExplicit bounds are given for the Kolmogorov and Wasserstein distances between a mixture of normal distributions, by which we mean that the conditional distribution given some $\sigma$ -algebra is normal, and a normal distribution with properly chosen parameter values. The bounds depend only on the first two moments of the first two conditional moments given the $\sigma$ -algebra. The proof is based on Stein’s method. As an application, we consider the Yule–Ornstein–Uhlenbeck model, used in the field of phylogenetic comparative methods. We obtain bounds for both distances between the distribution of the average value of a phenotypic trait over n related species, and a normal distribution. The bounds imply and extend earlier limit theorems by Bartoszek and Sagitov.


2021 ◽  
Vol 281 ◽  
pp. 109992
Author(s):  
Anas Hamdani ◽  
Jamal Charafi ◽  
Said Bouda ◽  
Lahcen Hssaini ◽  
Atman Adiba ◽  
...  

2007 ◽  
Vol 77 (2) ◽  
pp. 239-253 ◽  
Author(s):  
R. B. Pratt ◽  
A. L. Jacobsen ◽  
K. A. Golgotiu ◽  
J. S. Sperry ◽  
F. W. Ewers ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 64-72
Author(s):  
Danesha Seth Carley ◽  
Lauren A Gragg ◽  
Matthew J Matthew ◽  
Thomas W Rufty

2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.


Sign in / Sign up

Export Citation Format

Share Document