scholarly journals Micro-dissection and integration of long and short reads to create a robust catalog of kidney compartment-specific isoforms

2021 ◽  
Author(s):  
Ridvan Eksi ◽  
Daiyao Yi ◽  
Hongyang Li ◽  
Bradley Godfrey ◽  
Lisa R. Mathew ◽  
...  

AbstractStudying isoform expression at the microscopic level has always been a challenging task. A classical example is kidney, where glomerular and tubulo-insterstitial compartments carry out drastically different physiological functions and thus presumably their isoform expression also differs. We aim at developing an experimental and computational pipeline for identifying isoforms at microscopic structure-level. We microdissed glomerular and tubulo-interstitial compartments from healthy human kidney tissues from two cohorts. The two compartments were separately sequenced with the PacBio RS II platform. These transcripts were then validated using transcripts of the same samples by the traditional Illumina RNA-Seq protocol, distinct Illumina RNA-Seq short reads from European Renal cDNA Bank (ERCB) samples, and annotated GENCODE transcript list, thus identifying novel transcripts. We identified 14,739 and 14,259 annotated transcripts, and 17,268 and 13,118 potentially novel transcripts in the glomerular and tubulo-interstitial compartments, respectively. Of note, relying solely on either short or long reads would have resulted in many erroneous identifications. We identified distinct pathways involved in glomerular and tubulointerstitial compartments at the isoform level.We demonstrated the possibility of micro-dissecting a tissue, incorporating both long- and short-read sequencing to identify isoforms for each compartment.

2015 ◽  
Author(s):  
Neeraja M Krishnan ◽  
Prachi Jain ◽  
Saurabh Gupta ◽  
Arun K Hariharan ◽  
Binay Panda

Neem (Azadirachta indica A. Juss.), an evergreen tree of the Meliaceae family, is known for its medicinal, cosmetic, pesticidal and insecticidal properties. We had previously sequenced and published the draft genome of the plant, using mainly short read sequencing data. In this report, we present an improved genome assembly generated using additional short reads from Illumina and long reads from Pacific Biosciences SMRT sequencer. We assembled short reads and error corrected long reads using Platanus, an assembler designed to perform well for heterozygous genomes. The updated genome assembly (v2.0) yielded 3- and 3.5-fold increase in N50 and N75, respectively; 2.6-fold decrease in the total number of scaffolds; 1.25-fold increase in the number of valid transcriptome alignments; 13.4-fold less mis-assembly and 1.85-fold increase in the percentage repeat, over the earlier assembly (v1.0). The current assembly also maps better to the genes known to be involved in the terpenoid biosynthesis pathway. Together, the data represents an improved assembly of the A. indica genome. The raw data described in this manuscript are submitted to the NCBI Short Read Archive under the accession numbers SRX1074131, SRX1074132, SRX1074133, and SRX1074134 (SRP013453).


2020 ◽  
Author(s):  
Li Hou ◽  
Yadong Wang

Abstract BackgroundIn recent years, because of the development of sequencing technology, long reads were widely used in many studies, include transcriptomics studies. Obviously, Long reads have more advantages than short reads. And long reads align also different from short reads align. Until now Lots of tools can process long RNA-Seq, but there still have some problems need to solve. ResultsWe developed Deep-Long to process long RNA-Seq, Deep-Long is a fast and accurate tool. Deep-Long can handle troubles come from complicated gene structures and sequencing errors well, Deep-Long does well especially on alternative splicing and small exons. When sequencing error rate is low, Deep-Long can rapidly get more accurate results. While sequencing error rate rising, Deep-Long will use more time, but still more fast and accurate than most other tools.ConclusionsDeep-Long is an useful tool to align long RNA-Seq to genome, and Deep-Long can find more exons and splices.


2015 ◽  
Author(s):  
Nadia M Davidson ◽  
Ian J Majewski ◽  
Alicia Oshlack

Genomic instability is a hallmark of cancer and, as such, structural alterations and fusion genes are common events in the cancer landscape. RNA sequencing (RNA-Seq) is a powerful method for profiling cancers, but current methods for identifying fusion genes are optimized for short reads. JAFFA (https://code.google.com/p/jaffa-project/) is a sensitive fusion detection method that clearly out-performs other methods with reads of 100bp or greater. JAFFA compares a cancer transcriptome to the reference transcriptome, rather than the genome, where the cancer transcriptome is inferred using long reads directly or by de novo assembling short reads.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Omar Abou Saada ◽  
Andreas Tsouris ◽  
Chris Eberlein ◽  
Anne Friedrich ◽  
Joseph Schacherer

AbstractWhile genome sequencing and assembly are now routine, we do not have a full, precise picture of polyploid genomes. No existing polyploid phasing method provides accurate and contiguous haplotype predictions. We developed nPhase, a ploidy agnostic tool that leverages long reads and accurate short reads to solve alignment-based phasing for samples of unspecified ploidy (https://github.com/OmarOakheart/nPhase). nPhase is validated by tests on simulated and real polyploids. nPhase obtains on average over 95% accuracy and a contiguous 1.25 haplotigs per haplotype to cover more than 90% of each chromosome (heterozygosity rate ≥ 0.5%). nPhase allows population genomics and hybrid studies of polyploids.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Seth Commichaux ◽  
Kiran Javkar ◽  
Padmini Ramachandran ◽  
Niranjan Nagarajan ◽  
Denis Bertrand ◽  
...  

Abstract Background Whole genome sequencing of cultured pathogens is the state of the art public health response for the bioinformatic source tracking of illness outbreaks. Quasimetagenomics can substantially reduce the amount of culturing needed before a high quality genome can be recovered. Highly accurate short read data is analyzed for single nucleotide polymorphisms and multi-locus sequence types to differentiate strains but cannot span many genomic repeats, resulting in highly fragmented assemblies. Long reads can span repeats, resulting in much more contiguous assemblies, but have lower accuracy than short reads. Results We evaluated the accuracy of Listeria monocytogenes assemblies from enrichments (quasimetagenomes) of naturally-contaminated ice cream using long read (Oxford Nanopore) and short read (Illumina) sequencing data. Accuracy of ten assembly approaches, over a range of sequencing depths, was evaluated by comparing sequence similarity of genes in assemblies to a complete reference genome. Long read assemblies reconstructed a circularized genome as well as a 71 kbp plasmid after 24 h of enrichment; however, high error rates prevented high fidelity gene assembly, even at 150X depth of coverage. Short read assemblies accurately reconstructed the core genes after 28 h of enrichment but produced highly fragmented genomes. Hybrid approaches demonstrated promising results but had biases based upon the initial assembly strategy. Short read assemblies scaffolded with long reads accurately assembled the core genes after just 24 h of enrichment, but were highly fragmented. Long read assemblies polished with short reads reconstructed a circularized genome and plasmid and assembled all the genes after 24 h enrichment but with less fidelity for the core genes than the short read assemblies. Conclusion The integration of long and short read sequencing of quasimetagenomes expedited the reconstruction of a high quality pathogen genome compared to either platform alone. A new and more complete level of information about genome structure, gene order and mobile elements can be added to the public health response by incorporating long read analyses with the standard short read WGS outbreak response.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maria Artesi ◽  
Vincent Hahaut ◽  
Basiel Cole ◽  
Laurens Lambrechts ◽  
Fereshteh Ashrafi ◽  
...  

AbstractThe integration of a viral genome into the host genome has a major impact on the trajectory of the infected cell. Integration location and variation within the associated viral genome can influence both clonal expansion and persistence of infected cells. Methods based on short-read sequencing can identify viral insertion sites, but the sequence of the viral genomes within remains unobserved. We develop PCIP-seq, a method that leverages long reads to identify insertion sites and sequence their associated viral genome. We apply the technique to exogenous retroviruses HTLV-1, BLV, and HIV-1, endogenous retroviruses, and human papillomavirus.


2011 ◽  
Vol 6 (2) ◽  
pp. 275-282 ◽  
Author(s):  
Chao Ye ◽  
Linxi Liu ◽  
Xi Wang ◽  
Xuegong Zhang
Keyword(s):  
Rna Seq ◽  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Étienne Fafard-Couture ◽  
Danny Bergeron ◽  
Sonia Couture ◽  
Sherif Abou-Elela ◽  
Michelle S. Scott

Abstract Background Small nucleolar RNAs (snoRNAs) are mid-size non-coding RNAs required for ribosomal RNA modification, implying a ubiquitous tissue distribution linked to ribosome synthesis. However, increasing numbers of studies identify extra-ribosomal roles of snoRNAs in modulating gene expression, suggesting more complex snoRNA abundance patterns. Therefore, there is a great need for mapping the snoRNome in different human tissues as the blueprint for snoRNA functions. Results We used a low structure bias RNA-Seq approach to accurately quantify snoRNAs and compare them to the entire transcriptome in seven healthy human tissues (breast, ovary, prostate, testis, skeletal muscle, liver, and brain). We identify 475 expressed snoRNAs categorized in two abundance classes that differ significantly in their function, conservation level, and correlation with their host gene: 390 snoRNAs are uniformly expressed and 85 are enriched in the brain or reproductive tissues. Most tissue-enriched snoRNAs are embedded in lncRNAs and display strong correlation of abundance with them, whereas uniformly expressed snoRNAs are mostly embedded in protein-coding host genes and are mainly non- or anticorrelated with them. Fifty-nine percent of the non-correlated or anticorrelated protein-coding host gene/snoRNA pairs feature dual-initiation promoters, compared to only 16% of the correlated non-coding host gene/snoRNA pairs. Conclusions Our results demonstrate that snoRNAs are not a single homogeneous group of housekeeping genes but include highly regulated tissue-enriched RNAs. Indeed, our work indicates that the architecture of snoRNA host genes varies to uncouple the host and snoRNA expressions in order to meet the different snoRNA abundance levels and functional needs of human tissues.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Emma L Robinson ◽  
Syed Haider ◽  
Hillary Hei ◽  
Richard T Lee ◽  
Roger S Foo

Heart failure comprises of clinically distinct inciting causes but a consistent pattern of change in myocardial gene expression supports the hypothesis that unifying biochemical mechanisms underlie disease progression. The recent RNA-seq revolution has enabled whole transcriptome profiling, using deep-sequencing technologies. Up to 70% of the genome is now known to be transcribed into RNA, a significant proportion of which is long non-coding RNAs (lncRNAs), defined as polyribonucleotides of ≥200 nucleotides. This project aims to discover whether the myocardium expression of lncRNAs changes in the failing heart. Paired end RNA-seq from a 300-400bp library of ‘stretched’ mouse myocyte total RNA was carried out to generate 76-mer sequence reads. Mechanically stretching myocytes with equibiaxial stretch apparatus mimics pathological hypertrophy in the heart. Transcripts were assembled and aligned to reference genome mm9 (UCSC), abundance determined and differential expression of novel transcripts and alternative splice variants were compared with that of control (non-stretched) mouse myocytes. Five novel transcripts have been identified in our RNA-seq that are differentially expressed in stretched myocytes compared with non-stretched. These are regions of the genome that are currently unannotated and potentially are transcribed into non-coding RNAs. Roles of known lncRNAs include control of gene expression, either by direct interaction with complementary regions of the genome or association with chromatin remodelling complexes which act on the epigenome.Changes in expression of genes which contribute to the deterioration of the failing heart could be due to the actions of these novel lncRNAs, immediately suggesting a target for new pharmaceuticals. Changes in the expression of these novel transcripts will be validated in a larger sample size of stretched myocytes vs non-stretched myocytes as well as in the hearts of transverse aortic constriction (TAC) mice vs Sham (surgical procedure without the aortic banding). In vivo investigations will then be carried out, using siLNA antisense technology to silence novel lncRNAs in mice.


2015 ◽  
Vol 17 (4) ◽  
pp. 678-685 ◽  
Author(s):  
Tyler Weirick ◽  
Giuseppe Militello ◽  
Raphael Müller ◽  
David John ◽  
Stefanie Dimmeler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document