scholarly journals Spexin modulates molecular thermogenic profile of adipose tissue and thermoregulatory behaviors

2021 ◽  
Author(s):  
Shermel B. Sherman ◽  
Niraj Gupta ◽  
Mitchell Harberson ◽  
Riley Powers ◽  
Rebecca Rashleigh ◽  
...  

ABSTRACTThermoregulation is a physiological process by which a mammal regulates body temperature in response to its environment. Within the human body, thermoregulatory behaviors and metabolism are modulated by circulating metabolic factors. In our study, we tested the ability of the neuropeptide spexin, which shares sequence homology to galanin, to regulate these functions in female mice. Supraphysiological levels of spexin in C57BL/6 mice were insufficient to protect against diet-induced obesity after 50 days of treatment. Behavioral analysis of long-term spexin treatment appeared to modulate anxiety-like behaviors by promoting exploratory behaviors and thermoregulatory behaviors of nest building that ceased when animals were housed at thermoneutral temperatures. Upon examination of the molecular profile of brown and white adipose tissue, treatment disrupted the thermogenic profile of white adipose tissue, in which β3-adrenergic receptor expression was downregulated. Our results reveal novel functions for spexin as a modulator of thermoregulatory behaviors and adipose tissue metabolism.HighlightsSpexin treatment did not protect against diet-induced obesity in female mice.Spexin-treatment promoted thermoregulatory behaviors of nest building.Behaviors normalized when animals were housed in thermoneutral temperatures.Funding SourcesNot applicableDisclosure SummaryNothing to disclose

Diabetes ◽  
2014 ◽  
Vol 63 (7) ◽  
pp. 2415-2431 ◽  
Author(s):  
M. Alnaeeli ◽  
B. M. Raaka ◽  
O. Gavrilova ◽  
R. Teng ◽  
T. Chanturiya ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A806-A806
Author(s):  
Rachel Bell ◽  
Elisa Villalobos ◽  
Mark Nixon ◽  
Allende Miguelez-Crespo ◽  
Matthew Sharp ◽  
...  

Abstract Glucocorticoids play a critical role in metabolic homeostasis. Chronic or excessive activation of the glucocorticoid receptor (GR) in adipose tissue contributes to metabolic disorders such as glucose intolerance and insulin resistance. Steroid-metabolising enzymes in adipose, such as 11β-HSD1 or 5α-reductase, modulate the activation of GR by converting primary glucocorticoids into more or less potent ligands. Carbonyl reductase 1 (CBR1) is a novel regulator of glucocorticoid metabolism, converting corticosterone/cortisol to 20β-dihydrocorticosterone/cortisol (20β-DHB/F); a metabolite which retains GR activity. CBR1 is abundant in adipose tissue and increased in obese adipose of mice and humans1 and increased Cbr1 expression is associated with increased fasting glucose1. We hypothesised that increased Cbr1/20β-DHB in obese adipose contributes to excessive GR activation and worsens glucose tolerance. We generated a novel murine model of adipose-specific Cbr1 over-expression (R26-Cbr1Adpq) by crossing conditional knock-in mice with Adiponectin-Cre mice. CBR1 protein and activity were doubled in subcutaneous adipose tissue of male and female R26-Cbr1Adpq mice compared with floxed controls; corresponding to a two-fold increase 20β-DHB (1.6 vs. 4.2ng/g adipose; P=0.0003; n=5-7/group). There were no differences in plasma 20β-DHB or corticosterone. Bodyweight, lean or fat mass, did not differ between male or female R26-Cbr1Adpq mice and floxed controls. Lean male R26-Cbr1Adpq mice had higher fasting glucose (9.5±0.3 vs. 8.4±0.3mmol/L; P=0.04) and worsened glucose tolerance (AUC 1819±66 vs. 1392±14; P=0.03). Female R26-Cbr1Adpq mice also had a worsened glucose tolerance but fasting glucose was not altered with genotype. There were no differences in fasting insulin or non-esterified fatty acid between genotypes in either sex. Expression of GR-induced genes Pnpla2, Gilz and Per1, were increased in adipose of R26-Cbr1Adpq mice. Following high-fat diet induced obesity, no differences in bodyweight, lean or fat mass, with genotype were observed in male and female mice, and genotype differences in fasting glucose and glucose tolerance were abolished. In conclusion, adipose-specific over-expression of Cbr1 in lean male and female mice led to increased levels of 20β-DHB in adipose but not plasma, and both sexes having worsened glucose tolerance. The influence of adipose CBR1/20β-DHB on glucose tolerance was not associated with altered fat mass or bodyweight and was attenuated by high-fat diet-induced obesity. These metabolic consequences of Cbr1 manipulation require careful consideration given the wide variation in CBR1 expression in the human population, the presence of inhibitors and enhancers in many foodstuffs and the proposed use of inhibitors as an adjunct for cancer treatment regimens. Reference: Morgan et al., Scientific Reports. 2017; 7.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 661-661
Author(s):  
Deena Snoke ◽  
Rachel Cole ◽  
Genevieve Sparagna ◽  
Martha Belury

Abstract Objectives Investigate the impact of LA-rich oil (LO) on measures of energy metabolism in a mouse model of metabolic syndrome. Methods Ob/ob mice were fed diets containing 6% wt LO, oleic acid-rich (OO) or palmitic acid-rich (PO) for 6 weeks. Body composition was measured at weeks 0 and 6. Plasma was collected at necropsy to measure adiponectin, insulin, and glucose. Grip strength and muscle fiber cross-sectional area (CSA) of total and succinate dehydrogenase-positive (SDH) fibers were quantified in quadriceps. In white adipose tissue, mRNA was measured for markers of beiging and lipid storage. Results Mice fed OO and LO diets (vs. PO diet) had reduced % adipose. There was no difference of oils on plasma adiponectin or HOMA-IR. Decreases in grip strength were observed in PO-fed mice, while OO and LO-fed mice maintained strength throughout the study. LO-fed mice exhibited smaller skeletal muscle fibers compared to the PO-fed mice. OO-fed mice had fewer intermediate-sized SDH fibers. In white adipose tissue, LO-fed mice exhibited increased PGC1a, and decreased PPARy and LPL mRNA compared to PO-fed mice. Conclusions These findings suggest that dietary LA may alter lipid mobilization and metabolism in obese mice. These preliminary results showcase the importance of future investigation of lipid storage and mitochondrial phospholipid biology in skeletal muscle. Funding Sources Funding was provided by NIH R21CA185140, Ohio Agriculture Research and Development Center and the Carol S. Kennedy Professorship. DBS received support from the AOCS Thomas H. Smouse Memorial Fellowship.


2020 ◽  
Vol 39 (9) ◽  
pp. 1190-1199
Author(s):  
R Nagaraju ◽  
AKR Joshi ◽  
S Vamadeva ◽  
PS Rajini

Earlier, we demonstrated that chronic exposure to monocrotophos (MCP) elicits insulin resistance in rats along with increased white adipose tissue (WAT) weights. This study was carried out to delineate the biochemical and molecular changes in adipose tissues of rats subjected to chronic exposure to MCP (0.9 and 1.8 mg/kg bw/d for 180 days). Pesticide-treated rats exhibited increased fasting glucose and hyperinsulinemia as well as dyslipidemia. Tumor necrosis factor-alpha and leptin levels were elevated, while adiponectin level was suppressed in plasma of treated rats. MCP treatment caused discernable increase in the weights of perirenal and epididymal WAT. Acetyl coenzyme A carboxylase, fatty acid synthase, glyceraldehyde-3-phosphate dehydrogenase, lipin-1, and lipolytic activities were elevated in the WAT of MCP-treated rats. Corroborative changes were observed in the expression profile of proteins that are involved in lipogenesis and adipose tissue differentiation. Our results clearly demonstrate that long-term exposure to organophosphorus insecticides (OPIs) such as MCP has far-reaching consequences on metabolic health as evidenced by the association of adipogenic outcomes with insulin resistance, hyperinsulinemia, endocrine dysregulations, and dyslipidemia. Taken together, our results suggest that long-term exposure to OPI may be a risk factor for metabolic dysregulations.


2016 ◽  
Vol 20 ◽  
pp. 54-67 ◽  
Author(s):  
Griselda Rabadan-Chávez ◽  
Lucia Quevedo-Corona ◽  
Angel Miliar Garcia ◽  
Elba Reyes-Maldonado ◽  
María Eugenia Jaramillo-Flores

2012 ◽  
Vol 23 (6) ◽  
pp. 640-645 ◽  
Author(s):  
Mariko Takasaki ◽  
Taro Honma ◽  
Miyuki Yanaka ◽  
Kenta Sato ◽  
Nahoko Shinohara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document